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Abstract—In recent times, there has been a global surge of ran-
somware attacks targeted at industries of various types and sizes
from retail to critical infrastructure. Ransomware researchers
are constantly coming across new kinds of ransomware samples
every day and discovering novel ransomware families out in
the wild. To mitigate this ever-growing menace, academia and
industry-based security researchers have been utilizing unique
ways to defend against this type of cyber-attacks. I/O Request
Packet (IRP), a low-level file system I/O log, is a newly found
research paradigm for defense against ransomware that is being
explored frequently. As such in this study, to learn granular
level, actionable insights of ransomware behavior, we analyze the
IRP logs of 272 ransomware samples belonging to 18 different
ransomware families captured during individual execution. We
further our analysis by building an effective Artificial Neural
Network (ANN) structure for successful ransomware detection
by learning the underlying patterns of the IRP logs. We evaluate
the ANN model with three different experimental settings to
prove the effectiveness of our approach. The model demonstrates
outstanding performance in terms of accuracy, precision score,
recall score, and F1 score, i.e., in the range of 99.7% ± 0.2%.

Index Terms—Artificial Neural Network, I/O Monitoring, Mal-
ware, Ransomware

I. INTRODUCTION

Ransomware is a special type of malware that can seize

control over a computing system by exploiting vulnerability

of email, remote desktop protocol, software, etc. Once under

control, ransoms are demanded to return back the control to the

owner. In general, ransomware can be categorized in two ways:

locker - locking down the system to prevent any possible user

actions / services; and crypto - encrypting important user data

with a key to prevent any user access. This is however not a

novel threat in the cyber space, as it was first reported in 1989

when a 20k floppy drive at an AIDS conference was infected

and was named after as AIDS Trojan. Then, in 1996, Young

and Yung [15] presented their intuition on how cryptography

and its applications can be used for extortion-based threats.

The paper demonstrated an information extortion attack, a type

of cryptovirological attack, in which an author of the virus is

able to ask the victim to get back the possession of the valuable

pieces of information in exchange for the session key. Since

then, ransomware defenders and researchers have been busy

detecting as well as reporting new ransomware samples and

families out in the wild very frequently, and it is becoming

harder and harder to protect against this ever-changing enemy.

State-of-the-art Machine Learning (ML) techniques are be-

ing used as efficient detection schemes for diverse applications,

such as, malware analysis [3], network-based intrusion detec-

tion system [12], etc. With the unique ability to differentiate

the characteristics of benign and malicious actions, Supervised

Learning in the domain of ML allows us to identify what

is good and what is bad. The process of this learning starts

by feeding a ML model input data with a label representing

benign or malicious records. For many years, malware analysts

and researchers have been leveraging this learning process

with the use of system calls for improved malware detection

or to discover new variance of malware suites [14]. One of

the ways ransomware, a special type of malware suite, leaves

its footprints of the damage to victim machine is through

I/O Request Packet (IRP) logs1. In 2015, Kharraz et al. [6]

described the usefulness of monitoring the file system for

changes in the IRP logs to defend against ransomware which

later got adapted by researchers in this domain as a viable

ransomware detection technique. Our research takes detection

using IRP logs further by taking into account the granular level

activities spawned by each process triggered in the user space

as a result of the interaction between the ransomware and the

file system inside the kernel space. Additionally, it is centered

around the IRP logs captured in the ransomware executions in

presenting an effective detection scheme.

Problem Statement. As ransomware defenders and researchers

gather IRP logs during ransomware executions and build

state-of-the-art solutions to combat against this ever-evolving

malware suite, ransomware, our study aims to devise an

effective detection scheme by extracting actionable insights

from granular activities at the process level as the encryption

of the data assets are underway by the ransomware.

With the additional acquired knowledge of different users’

behaviors (benign records), i.e., home, office, and developer,

we construct an effective ML model using Artificial Neural

Network (also known as Neural Network) to discover and learn

the underlying patterns of the benign as well as malicious IRP

1https://docs.microsoft.com/en-us/windows-hardware/drivers/
gettingstarted/i-o-request-packets
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logs. After completion of the learning process with training

data, we evaluate the model’s binary classification performance

with testing instances and obtain outstanding results.

II. BACKGROUND

A. I/O Request Packet (IRP)

The I/O Request Packet (IRP) is considered as a common

method for requesting input/output (I/O) operations between

the user and the kernel mode. When a user executes a

command to open a file, the I/O system service inside the

kernel mode carries out the task. At first, it looks up file names

and checks access rights. Secondly, it locates the file inside the

file system and allocates memory for the IRP request inside the

I/O manager. Then, I/O manager passes the IRP information

to the file system driver from where the task to open the file

gets completed. At last, after receiving an I/O status from the

IRP, the I/O manager frees the memory and returns a handle

to the user with a success or failure operation status [2].

To describe the structure of IRP, there are three types of

such operation: IRP; FIO (Fast I/O) – designed to directly

transfer data between user buffer and system cache; and FSF

(File System Filter) – designed to support IRP operations on

file system2. The log contains several pieces of information

regarding a process that triggers the operation, e.g., process

id, parent id, thread id, and process name. We observe, there

are four special types of IRP flags: No Cache, Paging I/O,

Synchronous API, and Synchronous Paging I/O. In addition,

there are several other important flag attributes available in

the IRP logs: Major Operation Type – signifies the type of

IRP operation; Minor Operation Type – dependent on major

operation type; and Status – designed to map the flag value

to a human-readable format. Along with these flag values and

timestamps of pre-operation as well as post-operation, the log

captures some additional useful features too relating to file

system, such as, File Object – responsible to provide all the

file properties, File Name, Buffer Length, and Entropy.

For Windows XP and later operating systems, Microsoft

provides a Minifilter Driver, a kernel-mode driver, that the

third parties can hook into their tool and track down system

calls made by the programs. This utility driver has been

very popular among malware researchers in order to dissect

malware, e.g., ransomware, infection as they use it to collect

and then analyze system calls (or IRP logs) [4].

B. Prior Work and Datasets Collection

We base our study on I/O Request Packet (IRP) logs,

collected from Continella et al. [1]. The authors performed

a large-scale IRP data collection containing 1.7 billion IRPs

produced by 2, 245 different applications. In their study, they

developed an IRPLogger (or I/O file system sniffer) to col-

lect this low-level file system logs. The data collection was

executed in two phases: (1) Benign IRP logs collection - the

researchers managed 11 volunteers that included developers,

2https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/
irps-are-different-from-fast-i-o

home, and office users. The volunteers installed the built snif-

fer tool on their machines, ranging from Microsoft Windows

7 to Windows 10, in order to record the daily activities. These

recorded logs were considered ground truth dataset based on

the assumption that none of these machines were compromised

with any kind of cyber-attacks; and (2) Ransomware IRP logs

collection - the authors used 383 ransomware samples and

collected IRP logs for each ransomware execution inside a

Windows 7 machine. It is to note that not every process among

these execution traces was malicious, and hence, we had to

extract ransomware processes from each ransomware dataset

separately. In summary, the basis of our analysis is built upon

the IRP data collection performed in [1] for both 11 voluntary

users (benign records) and 272 ransomware samples collected

over approx. 90 minutes of executions. We were not able to

use all of 383 ransomware samples because of unexpected

formatting errors encountered while processing the raw IRP

logs, such as, timestamps, string to integer conversion, etc.

We will revisit the dataset processing issues in future.

III. EMPIRICAL STUDY

A. Data Cleaning and Formatting

Once we acquire the dataset, we start with data cleaning and

formatting. The IRP logs came in a tab separated document.

We discuss its default features categorized in groups for better

understanding, along with the ones that we derive -

Types of IRP Operation. As mentioned in Section II(A), there

are three types of IRP operations: IRP, FIO, and FSF. In the

dataset, we omit records that do not relate to any one these

mentioned IRP operations, such as, err. We then perform One-

Hot Encoding for these three types of categorical operations,

i.e., transform the operation strings into one-hot numeric array.

Operation Time. Each log in the dataset comes with two times-

tamps: pre-operation time and post-operation time. We convert

the text formatted timestamps (H:M:S:f) into milliseconds and

then compute the time difference between them by introducing

an additional feature, called ‘operation time elapsed.’

IDs. Each operation is associated with several numerical IDs,

such as, parent id, process id, and thread id. It is worth

mentioning that the values of each field is only unique to each

process as long as the process is active. Upon completion of

the process, the IDs are freed by the Operating System (OS),

and the OS can reassign the same IDs to another process.

The combination of process id and process name allows to

isolate the activities of a particular process over the span of a

ransomware session or in a ransomware IRP dataset.

Flags. As mentioned in section II(A), each IRP operation is

featured with different types of flag values. All the flag values

are in hexadecimal format. The flags include IRP Flag, Major

Operation Type, Minor Operation Type, Transaction, Status,

Inform, and Argument 1 - Argument 6. Each IRP Flag contains

a hexadecimal value to indicate its value, and four other types

of flag values with a space, such as, No Cache, Paging I/O,

Synchronous API, and Synchronous Paging I/O. An example
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TABLE I
DATA DISTRIBUTION OF NOTABLE FEATURE SPACES FOR OF VICTIM MACHINE’S IRP LOGS DURING RANSOMWARE EXECUTION (APPROX. 90 MINUTES).

Ransomware
Class

Types of IRP Operations Flags File System Information
Family IRP FSF FIO IRP Unique Major Status File Unique File Total File Buffer Entropy(Sample Size) Operation Operation Operation Flag Operation Type Object Accessed Accessed Length

Critroni Malicious 119, 028 191 257 16 17 13 5, 467 10, 251 303, 082 988 3, 965
(2) Benign 190 66 63 8 11 4 40 21 354 529 11
Crowti Malicious 219, 734 116, 364 1, 166 16 15 11 11, 225 16, 660 224, 861 17, 621 23, 042
(23) Benign 266 162 290 9 11 4 48 22 830 556 66
CryptoDefense Malicious 131, 344 101, 837 867 16 15 11 11, 999 17, 264 212, 562 22, 765 24, 329
(6) Benign 268 136 190 9 11 4 48 21 826 599 61
CryptoWall Malicious 131, 444 95, 052 1, 015 16 15 11 8, 079 15, 994 228, 009 5, 708 16, 884
(17) Benign 263 146 192 8 11 4 47 22 804 526 60
Dalexis Malicious 217, 532 200 980 14 15 10 8, 905 17, 431 427, 810 1, 147 2, 912
(1) Benign 227 118 207 8 11 4 43 21 811 459 70
Deshacop Malicious 500, 284 136, 120 7, 843 14 15 12 5, 158 19, 766 508, 256 3, 162 21, 810
(2) Benign 256 144 196 9 11 4 47 21 787 472 65
High Malicious 417, 447 1, 178 544 13 15 10 11, 716 19, 712 711, 972 19, 381 44, 084
(1) Benign 221 116 152 8 11 4 42 21 662 370 40
Parite Malicious 406, 462 101, 702 6, 321 14 15 12 5, 246 16, 921 412, 897 3, 384 19, 457
(1) Benign 256 148 389 9 11 4 46 21 813 499 65
Processhijack Malicious 291, 645 84, 697 4, 359 14 15 12 5, 806 13, 449 296, 118 2, 141 13, 989
(1) Benign 238 94 139 8 11 4 40 21 582 478 34
Pwszbot Malicious 96, 803 85, 176 490 15 15 11 9, 626 15, 473 262, 780 5, 617 15, 825
(1) Benign 256 116 127 8 11 4 49 22 577 512 22
Seven Malicious 175, 124 152, 269 942 16 15 11 10, 637 17, 509 272, 084 15, 649 23, 448
(1) Benign 264 132 157 8 11 4 46 22 805 502 56
TeslaCrypt Malicious 611, 678 267, 387 26, 953 14 15 11 32, 708 30, 564 638, 757 3, 759 21, 472
(1) Benign 250 94 86 8 11 4 42 21 519 579 30
Tinba Malicious 653, 943 194, 433 27, 630 14 15 14 9, 044 35, 162 681, 707 12, 042 47, 949
(1) Benign 255 165 420 8 11 4 46 21 812 466 74
Tpyn Malicious 177, 600 65, 748 1, 612 16 16 11 7, 546 10, 917 179, 402 6, 206 16, 158
(1) Benign 260 135 154 8 11 4 48 22 707 448 22
Upatre Malicious 131, 771 99, 159 905 16 15 11 10, 650 16, 267 202, 118 10, 417 19, 381
(56) Benign 265 147 195 8 11 4 48 21 826 527 62
Vobfus Malicious 297, 730 138 444 12 14 7 11, 280 14, 193 438, 984 6, 722 20, 453
(1) Benign 220 84 137 7 11 4 32 21 427 350 30
Yakes Malicious 177, 218 92, 796 1, 159 16 15 11 8, 869 13, 101 192, 897 8, 105 19, 401
(150) Benign 266 148 198 9 11 4 48 22 827 535 61
Zbot Malicious 166, 258 104, 951 888 16 15 11 10, 629 16, 457 208, 110 13, 302 22, 757
(6) Benign 266 135 163 8 11 4 48 22 780 559 53

Median Malicious 197, 566 97, 106 998 15 15 11 9, 335 16, 558 284, 101 6, 464 19, 955
Results Benign 256 135 176 8 11 4 47 21 796 507 58

value of this feature is 0x00000404 − −S−, which signifies

the value of the IRP Flag itself is 0x00000404, No Cache is

0 (for 1 the first character after space would be N), Paging

I/O is 0 (for 1 the second character would be P), Synchronous

API is 1, and Synchronous Paging I/O is 0 (it would be Y

for 1). Thus, we generate four additional features from one.

We ensure that all the string-based hexadecimal values are

properly formatted, i.e., removed extraneous white spaces. We

also handle missing values in the flags’ features.

File System Information. In regards to process interaction with

the file system, we notice several important features, such as,

File Object, Device Object, File Name, Entropy, and Buffer

Length. Similar to flags, both File Object and Device object

are in hexadecimal format. The datatype for Entropy is in float

while Buffer Length is in integer.

B. Ransomware Family Labeling

One of the important tasks related to ransomware detec-

tion is to identify the family name of all the ransomware

samples as we aim to design our experimentation on the

basis of ransomware family (described in Section IV and V).

All the 272 ransomware samples were represented uniquely

by their SHA256 hashes. We utilize VirusTotal API Engine

[13] to scan and identify the samples’ hashes and received

a complete scan report containing results aggregated from

many Anti-Virus (AV) tools, such as, Kaspersky, Symantec,

etc. If the scanned sample was detected malicious, the AV

engines labeled it with a malware family name, i.e., Kaspersky

generated the label Yakes for the ransomware samples having

“00ce22ce923e246990e43289b8b5b8191cbfc28dbee6d30b66226df0aa14b7bd” SHA-

256 hash. We observe, the labels provided by different AV

engines3 were not same for the same signature hashes. There-

fore, we explore a generalized approach to assign one family

label to samples from the same family as scanned by different

AV engines. Hence, we make use of AVClass - a malware

labelling tool [10]. We feed the scan report for all the samples

in a JSON file to the AVClass tool. Then, the tool assigns one

(most probable) family name to a set of similar samples as

diagnosed by VirusTotal. We thereby obtain 18 ransomware

families for all the samples used in our research.

C. Data Processing

After performing data cleaning and formatting as well as

mapping 272 ransomware samples to 18 ransomware fam-

ilies, we locate the actual ransomware IRP logs from the

ransomware dataset. As mentioned earlier, not every process

is a malicious process captured in the ransomware session.

Thus, we apply a heuristic approach. We start by grouping

the logs with process id and process name as this gives us

a complete trace of an application’s activities in the session

3https://www.virustotal.com/gui/file/00ce22ce923e246990e43289b8b5b8
191cbfc28dbee6d30b66226df0aa14b7bd/detection
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TABLE II
DATA DISTRIBUTION OF NOTABLE FEATURE SPACES FOR BENIGN USERS’ IRP LOGS DURING A RANDOM SESSION (10 MINUTES).

User Type
Operating Types of IRP Operations Flags File System Information

System IRP FSF FIO IRP Unique Major Status File Unique File Total File Buffer EntropyVersion Operation Operation Operation Flag Operation Type Object Accessed Accessed Length

Developer Windows 10 129 10 36 6 9 3 17 11 166 537 2
Home Windows 8.1 281 36 68 7 10 4 51 21 605 46 3
Office Windows 10 143 18 87 6 8 4 18 9 412 610 13
Home Windows 7 51 0 20 6 6 2 11 4 78 141 1
Home Windows 7 190 48 26 7 10 4 28 26 314 919 84
Developer Windows 10 92 24 40 6 9 4 27 18 169 1, 233 5
Developer Windows 8.1 276 4 78 6 7 2 18 25 549 3, 380 33
Home Windows 8.1 414 38 83 9 12 7 37 36 765 7, 474 54
Home Windows 8.1 354 100 212 13 12 6 68 47 683 4, 459 36
Home Windows 7 161 4 14 5 8 4 9 5 203 798 25
Office Windows 7 170 13 27 5 8 4 10 14 205 2, 270 17

Median Results 170 18 40 6 9 4 18 18 314 919 25

until the process is terminated. During ransomware execution

inside a test environment, Continella et al. [1] ensured no other

process(es) would access the files in certain folders in the

file system, i.e., they plotted decoy files in the machine to

keep track of this. Based on this assumption, we compute the

number of total and unique files accessed by each process in

the ransomware dataset. In addition, we flag the process if the

process accesses the decoy files in the system. With use of

the flag and the two features’ values, it becomes fairly easier

for us to identify the ransomware processes. Then, we extract

all ransomware process id(s) and process name(s) from each

sample’s IRP logs. Then, we introduce a ‘class’ feature in the

dataset to label benign and malicious instances. Thus, we craft

a supervised setting for the ransomware IRP logs dataset.

D. Observations

In this section, we discuss some of the key insights gained

while analyzing benign and ransomware dataset.

Ransomware IRP Logs. We notice, the ransomware dataset

reflects approx. 90 minutes of IRP logs. We present Table I

to show the data distribution of the notable feature spaces in

all 18 different ransomware family datasets containing both

malicious and benign logs. We take the median values for

each feature per family, i.e., Crowti ransomware family has

23 ransomware samples, and we compute the median results

from all its samples. To better portray our results and findings,

we partition our observations in three categories: Types of IRP

Operations, Flags, and File System Information. We present

the median results from all of the listed feature values at the

bottom of the Table I. The difference in every feature enables

us distinctly separate malicious and benign logs for every case.

We compile this tabular data distribution format for the entire

execution of the ransomware; however, it will be promising

to see the change of the feature values over time, e.g., Time

Interval Analysis, to analyze the trend of the feature space

over time. We highlight the largest value of each feature to

conveniently identify which ransomware family it represents.

Benign IRP Logs. We further compare the data distribution

space of ransomware with the benign IRP logs (as shown

in Table II). We randomly pick a 10-minute uninterrupted

session from each user type machine log in order to explore a

benign user’s interaction with his/her file system. File System

Information features gives us notable insights from the table

between benign users’ logs and ransomware logs, i.e., the

number of unique files and total files accessed by the benign

user is significantly low than any ransomware process in our

study. It strengthens our intuition that benign user profiling

would enable ransomware defenders and researchers to isolate

the anomalous processes at first. If the anomalous process

accesses decoy file(s) at the same timeframe, then it will be

an indication the process is malicious ransomware in our case.

IV. EXPERIMENTAL METHODOLOGY

Artificial Neural Network (ANN). Once the dataset is pro-

cessed and labeled with a binary class (benign or malicious),

we leverage Artificial Neural Network (ANN or commonly

known as Neural Networks) to learn the underlying patterns

of both benign and ransomware impacted IRP logs and build a

detection model for ransomware detection with the capabilities

of generalization and transfer learning, i.e., we aim to employ

an ANN structure that can effectively adapt itself for unseen

data and perform prediction on related context(s) based upon

learning from a given context. Therefore, our goals are set

to efficiently perform detection for (1) all the ransomware

families (trained and tested over all the samples); (2) one

ransomware family by being trained over all the samples of a

different family; and (3) each family (trained and tested over

a single family in every iteration). To achieve these goals, we

construct the ANN with one input layer, one hidden layer, and

one output layer. Our built ANN is a fully connected network,

where the size of the input layer neuron is the number of

features in the training set. We evaluate the performance of the

model with three different hidden layer settings: (1) between

the size of the input layer and the size of the output layer;

(2) 2/3 of the size of the input layer, plus the size of the

output layer; and (3) less than twice the size of the input layer.

We observe the third tuning setting is more suitable for our

purpose as we achieve better empirical findings. The output

layer contains one neuron for the binary classification task

providing class prediction probability.

Experimental Setup. To further describe ANN’s configu-

ration in our experimentation, we utilize Rectified Linear
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Unit (ReLU) activation function, where the function and its

derivative are monotonic with a range of 0 to ∞, for both

input and hidden layer. We use Sigmoid activation function,

where the S-shaped function is differentiable with a range of 0
and 1, for the output layer. We leverage an Adam Optimization

Algorithm and Binary Cross Entropy (BCE) loss function for

model compilation. We incorporate the early stopping method

during training to ensure the generalization ability of the

network. We monitor validation loss for up to 3 iterations to

trigger this action if the model shows no learning development

in the training phase. We select 20% of the training records

as the validation set to perform this task.

Before we train the model, further dataset processing needed

to be done. From Flags-based features, we drop all the

Arguments and Inform features as they do not help predict the

class. We additionally remove Process Name and File Name

features as we aim to build an ANN model that will not rely

on such name variables. We perform One-Hot Encode to the

remaining hexadecimal decimal based features, e.g., IRP Flag,

IRP Major Operation Type, IRP Minor Operation Type, Status,

and Transaction and store the final combined dataset. As the

data distribution of the feature space is not normalized, we

perform Min-Max Scalar operation on the dataset. We split

the dataset into training (80%) and testing (20%) set in a

stratified fashion, i.e., maintaining the equal distribution of

binary classes. We combine both benign and ransomware IRP

logs in different settings (described in the Results section) to

evaluate our built ANN model’s detection capabilities.

We then train the model with the derived training set. we

select 128 batch size for faster execution and 100 epochs for

the training process. It is to note that we do not find the

model to be trained over the entire 100 epochs due to the

incorporation of the early stopping method, which ensures that

the model is neither underfitted nor overfitted. After the model

is trained, we evaluate its performance with the derived testing

set. Along with the accuracy of the model, we compute the

precision score, recall score, and F1 score to give us a better

understanding of the model’s performance in every setting we

design. In the spirit of open science, our implementation is

open source for the community with MIT License on GitHub4.

V. RESULTS

In this section, we discuss the following experimental

findings from executing the Artificial Neural Network (ANN)

model in the following iterations maintaining the same archi-

tecture and hyperparameter settings of the ANN -

Single Family-wise Iteration. We design this experimentation

primarily in two ways: (1) when the number of the ransomware

samples of a particular ransomware family is equal or greater

than five (e.g., CryptoDefense, Upatre, etc.), we train the ANN

model with 80% of the samples while we test it with the

remaining 20%; and (2) when the number of ransomware

samples of a particular ransomware family is less than five

(e.g., Critroni, Deshacop, etc.), we combine all the samples’

4www.github.com/TnTech-CEROC/irp-logs-mining

logs together and then perform 80%-20% train-test split. The

rationale behind this is ensuring randomness as much as

possible for each family. The same approach is followed for

all of the eighteen families and the results are presented

in Table III. To summarize the model’s performance, the

median scores of the families’ results are reported, which

shows that the model performs with 99.86% accuracy, 99.84%
precision score, 99.87% recall score, and 99.84% F1 score.

This demonstrates, the built ANN model can effectively detect
variants of ransomware samples for each ransomware family.

TABLE III
PERFORMANCE OF THE BINARY CLASSIFICATION USING ANN FOR

SINGLE RANSOMWARE FAMILY WISE ITERATION.

Ransomware Sample Accuracy Precision Recall F1

Family Size Score Score Score

Critroni 2 0.9987 0.9976 0.998 0.9978
Crowti 23 0.996 0.9978 0.9965 0.9972
CryptoDefense 6 0.9983 0.9981 0.9988 0.9985
CryptoWall 17 0.9988 0.9989 0.9988 0.9984
Dalexis 1 0.9987 0.9988 0.9988 0.9983
Deshacop 2 0.9988 0.9988 0.9989 0.9989
High 1 0.9988 0.9973 0.9986 0.9984
Parite 1 0.9986 0.9986 0.9987 0.9986
Processhijack 1 0.9987 0.9987 0.9988 0.9988
Pwszbot 1 0.9988 0.9981 0.9985 0.9983
Seven 1 0.9988 0.9988 0.9988 0.9988
TeslaCrypt 1 0.9984 0.9988 0.9953 0.9975
Tinba 1 0.9986 0.9982 0.9989 0.9985
Tpyn 1 0.9985 0.9981 0.9987 0.9989
Upatre 56 0.9989 0.9988 0.9987 0.9982
Vobfus 1 0.9984 0.9986 0.9985 0.9981
Yakes 150 0.9975 0.9967 0.9985 0.9981
Zbot 6 0.9983 0.9981 0.9988 0.9984

Summary
272 0.9986 0.9984 0.9987 0.9984

(total) (median) (median) (median) (median)

Training with One Family, Testing with Another. We continue

the experimentation with a different setting by training the

ANN model with randomly chosen four samples from one

ransomware family, e.g., Upatre and Yakes, and testing it with

a randomly chosen sample from another ransomware family,

e.g., Crowti and Zbot, respectively. Table IV shows the results

for these two cases. There is no rationale behind selecting

these two particular sets of ransomware families. Further

investigation shows that the results remain similar in almost

every case, with performance scores of the model within the

range of 99.7%± 0.2%. This indicates, the constructed ANN
model can effectively detect the underlying pattern of a new
ransomware family on which it was not trained over.

TABLE IV
PERFORMANCE OF THE BINARY CLASSIFICATION USING ANN FOR

TRAINING WITH ONE FAMILY, TESTING WITH ANOTHER.

Training Testing Accuracy Precision Recall F1

Family Family Score Score Score

Upatre Crowti 0.9976 0.9969 0.9987 0.9983
Yakes Zbot 0.9989 0.9984 0.9988 0.9981

Training and Testing with All the Families. The final

experiment includes all the ransomware families; however,

inclusion of 18 ransomware families with all 272 ransomware

samples turned out to be infeasible in terms of memory usage.

Therefore, one randomly selected sample from each of the

ransomware families were used in the experiment. We train

the model with 80% of the combined dataset while test it
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with the remaining 20%. We achieve 99.8% accuracy, 99.74%
precision score, 99.86% recall score, and 99.85% F1 score.

This signifies, our constructed ANN model can effectively
detect variants of ransomware families in our study.

VI. RELATED WORK

Ransomware researchers have utilized this low-level I/O

Request Packet (IRP) logs to propose various defensive mech-

anisms to combat against ransomware. Kharraz et al. [6]

analyzed 1, 359 ransomware samples to describe workings

and effect of ransomware, and then, monitored file system

through IRP logs in users’ machine for successful ransomware

detection. Since then, many state-of-the-art research work in

this field incorporated IRP to their study for ransomware

protection where IRP logs were used as a tool for file system

and / or process monitoring [1], [5], [9], [11].

McIntosh et al. [7], [8] conducted ransomware behavior

analysis using the same dataset [1] like us. The authors in both

research work extracted some useful pieces of information

from the dataset: (1) types of the files (as well as paths)

ransomware generally targeted; (2) number of the IRP requests

to modify file contents; and (3) the total number of file types

modified during ransomware operation. To compare, our work

has covered much more granular level insights on ransomware

behavior, along with construction of an efficient Artificial

Neural Network (ANN) model for ransomware detection.

VII. CONCLUSION

Detection of ransomware, a special purpose malware suite,

has been one of the prime research areas among malware

analysis researchers as well as malware defenders due to the

severe damage it incurs to the real-world organizations. As

new variants of ransomware surface in the wild quite fre-

quently, different areas are explored to tailor efficient detection

schemes, among which I/O Request Packet (IRP) logs is con-

sidered as one of the most promising tools. In this research, we

utilize IRP logs from 272 ransomware samples (belonged to

18 ransomware families) and 11 benign machines used in [1].

Having the logs processed, we devise a data-driven approach

for effective ransomware detection by learning at granular

level with actionable insights of ransomware behavior. We

incorporate data analytic tasks to preview data distribution of

all the studied ransomware samples. We construct Artificial

Neural Network (ANN or Neural Networks) architecture as

the detection scheme. In order to evaluate the model, we

design three experimentation settings, and our results show

that the ANN model can effectively (1) detect variants of

ransomware samples for each ransomware family; (2) discover

the underlying pattern of a new ransomware family on which

it was not trained over; and (3) predict IRP logs from variants

of ransomware families. We report the accuracy, precision

score, recall score, and F1 score for every experiment we

have performed, and the computed results fall in the range

of 99.7%± 0.2% for each experimental setting.

Our approaches are not suitable for real-time detection since

it trains on post-ransomware infection IRP logs; however,

we plan to devise an early detection scheme by testing the

built model’s performance within 5, 10, or 20 minutes of

the ransomware activities. We will explore finding threshold-

based values on different feature spaces as well as common

sequences in the ransomware’s IRP flag-based features that

could lead to an effective early detection. With the acquisition

of several ransomware families’ logs, we consider performing

multiclass classification in our future work as well.
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