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Abstract—Intrusion Detection Systems (IDS) have a long his-
tory as an effective network defensive mechanism. The systems
alert defenders of suspicious and / or malicious behavior detected
on the network. With technological advances in AI over the
past decade, machine learning (ML) has been assisting IDS
to improve accuracy, perform better analysis, and discover
variations of existing or new attacks. However, applications of ML
algorithms have some reported weaknesses and in this research,
we demonstrate how one of such weaknesses can be exploited
against the workings of the IDS. The work presented in this paper
is twofold: (1) we develop a ML approach for intrusion detection
using Multilayer Perceptron (MLP) network and demonstrate
the effectiveness of our model with two different network-based
IDS datasets; and (2) we perform a model evasion attack against
the built MLP network for IDS using an adversarial machine
learning technique known as the Jacobian-based Saliency Map
Attack (JSMA) method. Our experimental results show that
the model evasion attack is capable of significantly reducing
the accuracy of the IDS, i.e., detecting malicious traffic as
benign. Our findings support that neural network-based IDS is
susceptible to model evasion attack, and attackers can essentially
use this technique to evade intrusion detection systems effectively.

Index Terms—Adversarial Machine Learning, Evasion Attack,
Intrusion Detection System, Neural Network

I. INTRODUCTION

The use of Machine Learning (ML) in Intrusion Detection

System (IDS) is widespread and has demonstrated remarkable

performance as a robust and effective defense mechanisms

[37], [41]. An IDS provides detection capabilities over ma-

licious traffic by generating alerts with network logs such

that further intelligence can be derived as and when ned-

eded. Based on its placement in the network infrastructure,

a network-based IDS monitors the communication that trav-

els into and out of the network, while a host-based IDS

scans a particular host (e.g., server), to notify the network

administrator for possible security threats. The two types of

IDSs are (1) Signature-based IDS that analyze network traffic

is for known malicious signatures and (2) Anomaly-based

IDS that compares the network traffic against a user’s known

patterns and raises an alert if it deviates from the pattern.

Researchers have leveraged various ML based classifiers, such

as, Artificial Neural Networks, Decision Trees, Support Vector

Machine (SVM), Fuzzy Logic, and Bayesian Networks to

detect malicious traffic as well as discover unseen attacks that

deviate from normal profile [10], [39]. In our study, we focus

on network-based IDS, also referred as NIDS, and Artificial

Neural Network (ANN) as our machine learning algorithm.

Despite success of machine learning for intrusion detection,

the advent of Adversarial Machine Learning has recently

emerged as a significant threat to the effectiveness of such

applications. An adversary can exploit vulnerabilities in the

machine learning algorithm itself or the trained ML model

to compromise network defense [16]. There are various ways

this can be achieved, such as, Membership Inference Attack

[36], Model Inversion Attack [11], Model Poisoning Attack

[25], Model Extraction Attack [42], Model Evasion Attack [3],

Trojaning Attack [22], etc. The range of these attacks typically

depends on the level of access an adversary has to the trained

model. For example, an adversary may have perfect knowledge

about the type of the model used as well as its workings or

s/he may have no knowledge about the model at all. Our focus

in this research is on demonstrating a Model Evasion Attack

for IDS whereby an adversary can evade the ML model for

network-based IDS by crafting adversarial samples. If s/he

is successful, the attacker may be able to gain access to the

network with malicious traffic and cause significant harm.

The following are the main contributions of the paper:

• We construct a Multilayer Preceptron (MLP) model, a

popular Neural Network topology, to perform binary

classification over benign and attack traffic in a network-

based anomaly IDS. In our experiments, we achieve more

than 99% accuracy for all experimental datasets used.

• We demonstrate Model Evasion Attack against the built

MLP model in a white-box setting, where the accuracy

of the attacked model drops significantly and discuss

possible countermeasures to prevent this type of attacks.

The rest of the paper is organized as follows: Section 2

provides an overview of the Model Evasion Attack. Section 3

first explains the datasets we use in our experiments, followed

by the evaluation of our twofold research by discussing the

construction of a Multilayer Perceptron (MLP) network as

well as its classification results and then describing the design

of our attack and its effectiveness. We conclude this section

with a description of some possible countermeasures against

this attack. Section 4 provides an overall discussion of our
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experiments, followed by relevant work in section 5. Section

6 summarizes the paper, its contributions, and future work to

further improve upon this research.

II. MODEL EVASION ATTACK

The goal of Model Evasion Attack is to cause the machine

learning model to misclassify observations during the testing

phase (as shown in Fig. 1). Applied to a network-based

IDS, an adversary attempts to evade detection by altering the

malicious instances in such a way that the IDS misclassifies

this behavior as benign. To elaborate, there are four different

ways this can take place [26]: Confidence Reduction, where

reducing the confidence score output leads to misclassifica-

tion; Misclassification, where an adversary tries to alter the

correct output classification to a class than the original class;

Target Misclassification (our approach), where the adversary

produces a sample that fools the model to classify the behavior

as a target class; and Source / Target Misclassification, where

the attacker makes the output class classification of a specific

adversarial sample to be a specific target class.

Fig. 1. Diagram of the model evasion attack against a trained machine learning
model during the testing phase.

To clarify the capabilities of an adversary, we outline three

different knowledge scenarios [29] -

White Box. The adversary has perfect knowledge of the target

classification model including the type of the classifier used

and its structure. S/he also knows all parameters of the model

that are required to perform prediction as well as all or part

of the training dataset and its features.

Black Box. The adversary has zero knowledge of the target

model. It may be known that the model performs classification,

but the adversary does not have access to the training data,

model structure or type, or any parameters of the model. S/he

is able to offset this lack of information by querying the model

for potential information leakage.

Grey Box. The adversary has an incomplete knowledge of the

target model and knows the features considered by the model

and its type. S/he does not have any part of the training set or

the weights within the model. As in the case of the Black Box

model, the adversary can query the target model such that any

information the model leaks, can potentially be exploited.

In all cases, the adversary is only able to alter the data

during the testing phase of the classification. Our attack

depends on the knowledge about certain parameters used in

the trained model but does not depend on the training dataset.

Because of this, we consider our attack scenario to be white

box. We also assume that the attacker is able to modify the

test instance in such a way as to modify any of the features

seen by the IDS. Additionally, the general intuition behind

performing a successful model evasion attack is to define a

loss function that the adversary aims to maximize or minimize

for each sample to results in misclassification [3], [19]. It is

important to note that, our experimentation is based on a white-

box setting and do not evaluate the attack’s effectiveness based

on other attack scenarios (e.g., black-box setting).

III. EVALUATION

We first describe the datasets that we use for evaluation,

followed by the description of the target model and our

experimental setup. We then present the results of model

evasion attacks against different datasets.

A. Dataset

CICIDS 2017. Released by the Canadian Institute for Cy-

bersecurity in 2017, this dataset closely resembles real-world

data [35]. The IDS logs were recorded over five days with a

total 51.1 GB of packet capture (PCAP) files1 built upon the

abstract behavior of 25 users based on the HTTP, HTTPS, FTP,

SSH, and email protocols. With 12 different victim machines

and 2 attacker machines, this labelled dataset features common

attacks, such as, Web based Brute Force, XSS and SQL

Injection, DoS, DDoS, Infiltration, Heart-bleed, Bot, and Scan.

The dataset is available online for public use2.

For our experiments, we sampled 950, 000 records in total.

Each record consists of 80 continuous features with a binary

labelled class of benign or attack.

TRAbID 2017. Viegas et al. [43] produced a network based

intrusion database in a controlled and reproducible environ-

ment. To depict a real-world use case, the dataset includes

client-server communication. Legitimate traffic was generated

by the client requesting services available in the server, such

as, HTTP, SMTP, SSH, SNMP, and DNS, while the attacker

from a client machine launched attacks to the same server.

The type of the attacks primary included different categories

of DoS (e.g., SYN flood, ICMP flood, etc.) and Scan (e.g.,
SYN scan, ACK scan, etc.).

For our experimentation, we collected 18, 000 records in

total. Unlike CICIDS 2017, each record in this case consists

of 43 continuous features. The dataset is also labelled with

a binary class of benign or attack and is available online

1https://fileinfo.com/extension/pcap
2https://www.unb.ca/cic/datasets/ids-2017.html
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for public use3. It is important to note that both datasets are

balanced and suitable for binary classification tasks.

B. Building the ML Model for IDS

We now describe the construction of the target machine

learning model for network-based intrusion detection system

(IDS) and its performance in detecting attack traffic.

Multilayer Perceptron (MLP) Network. We use a Multilayer

Perceptrons (MLP) network, which is a widely used Neural

Network topology. With w as the real vector of weights, b ∈ R

as the bias, and h as the transfer function, the decision function

of the MLP can be formally defined:

f(x) = w · h(vi · x+ di) + b

where, (vi, di) ∈ R
n × R is a representation of the weight

of the i-th hidden unit [8]. An MLP network is usually

constructed with three or more layers, that is, one input layer,

one or more hidden layer, and one output layer. We select one

hidden layer and build a fully connected network (i.e., each

node in the input layer is connected with a certain weight to

every node in the hidden layer) as shown in Fig. 2.

Fig. 2. A simple Multilayer Perceptron (MLP) network with one input layer
X = (x1, x2, x3), one hidden layer H = (h1, h2, h3), and one output O.

We use a Rectified Linear Unit (ReLU) activation function

[32], where the function and its derivative are monotonic with

a range of 0 to ∞, in the input layer as well as hidden layer

of the MLP network. Since we derive the probability value of

the binary class in the output layer, we use Sigmoid activa-

tion function, where the S-shaped function is differentiable

with a range of 0 and 1 [40]. To compile the model, we

use an Adam optimization algorithm, a first-order gradient-

based optimization of stochastic objective functions [18], and

Binary Cross Entropy (BCE) loss function [21]. To control the

generalization ability of a perception, we incorporate the use

of early stopping during training. We then monitor validation

loss to trigger this action. We also select 10% of the training

records as the validation set to perform this task.

We base our analysis on both the CICIDS 2017 and

TRAbID 2017 datasets and tune our model similar to what

we discussed before. We first scale the dataset so that all

3https://secplab.ppgia.pucpr.br/?q=trabid

the feature values are in the range of 0 to 1, which is also

referred as MinMax Scalar. Then, we split the data in 80%
training and 20% testing instances. Thus, we have approx-

imately 760, 000 and 14, 400 training records from CICIDS

and TRAbID dataset respectively. Additionally, we perform

stratified splits of training and testing instances to preserve

the same percentage for each target class as in the complete

set provided in the dataset.

Experimental Results. In this section, we describe our ex-

perimental results in terms of Accuracy, which denotes the

extent of correct predictions by the model; Precision, which

is a measurement of the ratio of the true positive records to all

positively labelled instances; Recall, which is the ratio of the

true positive instances to all instances that should have been

labelled positive; and F1 score, which is the harmonic mean

of precision and recall [30].

Precision Score =

∑
True Positive

∑
True Positive +

∑
False Positive

Recall Score =

∑
True Positive

∑
True Positive +

∑
False Negative

F1 Score = 2 · Precision Score × Recall Score

Precision Score + Recall Score

For both datasets, MLP model was succesfull in accurately

detecting benign traffic as well as attack traffic. Fig. 4 shows

that the model performed at 99.5% accuracy for CICIDS 2017

dataset while at 99.8% accuracy for TRAbID 2017 dataset.

To further illustrate our results with the described param-

eters (i.e., precision, recall, and F1) scores, Table I shows

that the obtained results are very close in all settings. We

demonstrate the performance of benign and attack traffic

prediction individually with weighted average.

TABLE I
PERFORMANCE OF THE MLP NETWORK ON THE LEGITIMATE INSTANCES.

Particular Precision Recall F1F1F1 Support
CICIDS TRAbID CICIDS TRAbID CICIDS TRAbID CICIDS TRAbID

Benign 0.9957 0.9978 0.9951 0.9973 0.9954 0.9975 110, 246 1, 832
Attack 0.9932 0.9973 0.9951 0.9978 0.9954 0.9975 79, 553 1, 8317

Weighted Avg. 0.99460.99460.9946 0.99750.99750.9975 0.99460.99460.9946 0.99750.99750.9975 0.99450.99450.9945 0.99750.99750.9975 189, 799189, 799189, 799 3, 6633, 6633, 663

We train both model for 100 epochs with a batch size of 64.

From Fig. 3, we notice that the MLP network tends to overfit

after 13 epochs for CICIDS 2017 and 16 epochs for TRAbID

2017. However, we preserve the generalization of the model

by triggering an early stopping task based on the validation

loss. Additionally, we define a delay of 2 epochs to verify that

there were no signs of improvement after the initial indication.

C. Adversarial Machine Learning to Evade IDS

In this section, we report on how we have used the built

MLP model as our target model to launch the model evasion

attack using Adversarial Machine Learning.

Attack Design. The purpose of the IDS evasion attack is to

generate data samples in such a way that it confuses the trained

MLP model to classify malicious data as benign. In other
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Fig. 3. Accuracy over Epoch and Loss over Epoch curves for the MLP generated on CICIDS 2017 (on left) and TRAbID 2017 dataset (on right).

(a) CICIDS 2017 (b) TRAbID 2017

Fig. 4. Confusion matrix graphs for MLP generated on two different datasets.

words, we aim to inject adversarial instances to the model

during testing and obtain benign outputs. More formally, we

desire to craft adversarial sample X∗ by adding a perturbation

to the legitimate sample X (i.e., X∗ ← X + δX , where δ is

denoted as perturbation), such that F (X∗) = Y ∗ �= Y .

In this study, we base our attack analysis on the assumption

that the only knowledge the adversary has is about the pa-

rameters the model uses to predict the binary class (benign or

attack). This is close to a real-world setting because it is not

trivial for the adversary to easily infer knowledge about the

model architecture trained for network-based IDS. On a related

note, Tramèr et al. [2016] did show that it is possible to extract

internal information of the MLP network architecture [42].

Our attack design is primarily focused on creating adversar-

ial test samples based on Jacobian-based Saliency Map Attack

(JSMA) [26]. With only a small perturbation in the legiti-

mate data samples, the JSMA generates adversarial samples

based on the Saliency Map method, as described in [38]. We

leverage the saliency map to search through the legitimate test

instances, closely observe the sensitivity information to choose

a perturbation δX among the input dimensions that is likely

to fool the built MLP model, and make iterative changes to

produce an adversarial sample set. Following these steps, we

exploit legitimate test instances collected from both datasets.

Attack Effectiveness. We evaluate the effectiveness of our at-

tack by testing the trained MLP model with the adversarial test

samples. As shown in Table II, we notice 21.52% and 29.87%

performance drop in terms of accuracy for CICIDS 2017 and

TRAbID 2017 dataset respectively. This demonstrates that

the trained MLP model fails to correctly predict adversarial

samples as attack traffic. It also signifies that an adversary

can craft a malicious network traffic such that the network-

based IDS classifies it as benign. Thus, the defense mechanism

is successfully evaded by exploiting the legitimated traffic

communication between the client and the server.

TABLE II
PERFORMANCE OF MODEL EVASION ATTACK ON THE MLP NETWORK.

Dataset # Instances Accuracy Accuracy Performance
Legitimate Instances Adversarial Instances Drop

CICIDS 190, 291 99.5% 78.09% 21.52%
TRAbID 3, 694 99.8% 69.99% 29.87%

It is worthwhile to mention that there are other methodolo-

gies to simulate similar types of attacks (e.g., Fast Gradient

Sign Method (FGSM) [12]); however, the JSMA method

possesses the ability to generate adversarial samples with a

lesser degree of distortion. Additionally, the FSGM method

has been found to be ill-suited for the IDS setting [33].

Implementation. We implement our MLP model using Keras

[7], utilizing the Python machine learning tool Scikit-Learn

[28] to execute data processing tasks, and used Matplotlib

library [17] to generate all the graphs in this paper. To

implement the attack, we used CleverHans, a Python library

to benchmark machine learning systems’ vulnerability to ad-

versarial examples [24]. Finally, our implementation of the

attack was tested with TensorFlow version 1.13.1 [1]. Our

implementation has been made open source for the community

with MIT License and is available online4.

Countermeasures. Following is a discussion of a few potential

countermeasures to prevent the model evasion attack that we

used on our MLP network. Papernot et al. [2016] leveraged the

distillation method, introduced by Hinton et al. [15], to reduce

the size of the deep neural network and thus the computing

resources, as a defense strategy to reduce the network’s

vulnerability to adversarial sample generation [27]. The paper

pointed out that reducing the amplitude of the adversarial

gradient would enable the model to generalize better since

crafting adversarial samples becomes easier when adversarial

4https://github.com/TnTech-CEROC/adversarial ml ids
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gradients are high. Thus, this increases the resilience of the

model to adversarial samples. Other mitigation techniques for

model evasion attack include methods to tighten the decision

boundary of a classification algorithm so that benign features

cannot easily be applied to malicious samples [3], training the

classifier over malicious samples generated with adversarial

knowledge [34], and removing features from the model that

are not immediately necessary [2], [46]. One of our future

work will be to validate and compare the effectiveness of such

countermeasures applied to our research.

IV. DISCUSSION

We evaluate our MLP network trained over two different

datasets and are confident that its accuracy with other network-

based IDS dataset will be similarly effective. We then analyze

model evasion attack on the presented Multilayer Perceptron

(MLP) model for the target class misclassification. In this way,

we fool the model into misclassifing attack records as benign

and hence evade the network defense. Reducing the output

confidence of the predicted class by the classifier would be

another avenue to perform this kind of evasion attack, which

we leave for future work.

We base our experimentation on white-box setting and do

not evaluate the attack’s effectiveness based on other attack

scenarios (e.g., black-box setting). We validate the effective-

ness of our attack in terms of the drop in accuracy when tested

with the adversarial samples crafted with small perturbations

on the input dimensions and the Jacobian-based Saliency Map

Attack (JSMA) method. Another avenue of our future work

includes gathering knowledge of sensitive features that cause

flipping the prediction of the class.

V. RELEVANT WORK

Adversarial machine learning has become a topic of much

interest in the cybersecurity space. This is largely because

classification algorithms have been successful in solving the

problems of malware detection. There are different kinds of

adversarial machine learning techniques that allow attackers

to subvert these classification algorithms in malicious ways.

One such methodology is known as model evasion attack that

allows an adversary to alter an adversarial sample such that it

is misclassified as benign. Pitropakis et al. [2019] provided

a detailed taxonomy on the model evasion attack to well

understand different types of the applications, the architecture

of the models, and the used datasets [29].

Model evasion attack is often done via gradient descent

over the discrimination function of the classifier [3], [4],

[6]. By applying gradient descent over the discrimination

function of the classifier, these methodologies are able to

identify traits of benign samples, such that these traits may be

applied to malicious samples to force misclassification. Much

like [33], we also leverage the Jacobian-based Saliency Map

Attack (JSMA) method to evade the model’s detection using

different datasets. Gradient descent methodologies are not

without their weaknesses. They specifically target classifiers

with differentiable discrimination functions. Such classifiers

typically include Support Vector Machine (SVM) with dif-

ferentiable kernels and neural networks. Other methodologies

have been devised to perform attacks on a broader spectrum

of classification algorithm, including [45] which uses genetic

algorithms, and in [26] which devises a Forward Derivative

based on Jacobian Matrices.

We demonstrate the model evasion attack on the network-

based IDS; however, there are other applications where this

type of attack was employed such as, spam filtering [13], [20],

[23], visual recognition [5], [14], [31], and malware detection

[3], [9], [44]. This research adds intrusion detection to the list.

VI. CONCLUSION

In our study, we first build a supervised machine learning

model to detect and classify benign and attack traffic using

two different network-based intrusion detection system (IDS)

datasets: CICIDS 2017 [35] and TRAbID 2017 [43]. We

construct a Multilayer Perceptron (MLP) network to perform

binary classification task and achieved outstanding detection

results, i.e., 99.5% and 99.8% accuracy for CICIDS and

TRAbID, respectively. We then apply model evasion attack

from the adversarial machine learning suite to demonstrate that

it is possible to evade intrusion detection systems effectively.

We consider the trained MLP model as our target model. To

implement our attack, we select the Jacobian-based Saliency

Map Attack (JSMA) method in a white-box setting, where an

adversary has perfect knowledge over the parameters required

for the model to perform prediction. In other words, the

adversary crafts adversarial samples with small perturbation to

the legitimate testing samples and attempts to fool the model

during the testing phase. We demonstrate success in our attack

and validated its effectiveness in terms of 22.52% and 29.87%

accuracy drop in performance for CICIDS and TRAbID,

respectively. This signifies that evading network defense is

possible without much effort unless proper countermeasures

are undertaken, as discussed.
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