
A Protocol Independent Approach in Network
Covert Channel Detection

Md. Ahsan Ayub∗, Steven Smith†, Ambareen Siraj‡
Department of Computer Science

Tennessee Technological University

Cookeville, USA

{mayub42∗, smsmith23†}@students.tntech.edu

asiraj@tntech.edu‡

Abstract—Network covert channels are used in various cyber-
attacks, including disclosure of sensitive information and enabling
stealth tunnels for botnet commands. With time and technology,
covert channels are becoming more prevalent, complex, and
difficult to detect. The current methods for detection are protocol
and pattern specific. This requires the investment of significant
time and resources into application of various techniques to catch
the different types of covert channels. This paper reviews several
patterns of network storage covert channels, describes generation
of network traffic dataset with covert channels, and proposes
a generic, protocol-independent approach for the detection of
network storage covert channels using a supervised machine
learning technique. The implementation of the proposed generic
detection model can lead to a reduction of necessary techniques
to prevent covert channel communication in network traffic. The
datasets we have generated for experimentation represent storage
covert channels in the IP, TCP, and DNS protocols and are
available upon request for future research in this area.

Index Terms—Decision Tree, DNS, IPv4, K-Nearest Neighbors,
Logistic Regression, Network Covert Channel, Support Vector
Machine (SVM), TCP

I. INTRODUCTION

Network covert channels are a hidden form of commu-

nication that use existing protocols in unintended ways for

unauthorized information transfer. There are two types of

covert channels: storage covert channels (which use the direct

or indirect writing of a storage location by one process and

the direct or indirect reading of it by another) and timing

covert channels (which use the timing of packets/processes

to represent the communication being sent over the channel).

Researchers have been studying these channels since 1973 [7].

Covert channels can be used to secretly leak sensitive data

and hide military as well as secret service communication

[10]. Wendzel et al. [18] created a taxonomy that categorizes

patterns for such techniques. Our focus is on network storage

covert channels without consideration of the payload of the

packets. These channels can enable indiscernible security

breaches for a network. Examples of storage covert channel

techniques include the embedding of hidden data using random

values, encoding data into the least significant bit (LSB) of

a field, and insertion of data in unused portions of header

fields. There has been a considerable amount of work done to

illustrate effective methods for the detection of covert channels

in a specific network protocol; however, little work has been

done to propose a protocol independent approach for network

covert channel detection [11], [12], [16].

Many techniques have been proposed and implemented to

detect the actions of covert channels using machine learning

techniques. Wendzel et al. [18] claim that covert channel

patterns are generic across protocols and can therefore be

identified for network, transport, and application layers if

certain parameters match. However, very few general detection

techniques exist. In addition, there are studies to detect the

presence of network covert channels using Neural Network

[17] and Support Vector Machines (SVM) [15]. Although these

machine learning techniques can be used in layers beyond the

transport layer to improve covert channel detection, at network

level, these studies are limited to the TCP sequence number

field and/or the IP identification field. They do not consider

other possibilities of intentional hidden communication using

various other network protocol level parameters.

Traditionally, detection across multiple protocols requires

the simultaneous use of multiple techniques, leading to high

overhead on network systems. In this study, we seek to

identify a common approach for detection of covert channels

across the various protocols of a network. This will eliminate

the need for the detection mechanisms to be tailored for a

specific protocol. In addition, we also describe the generation

of an experimental network traffic dataset containing covert

channels. Our generated dataset (available upon request) can

potentially be used to assist the research community with

improving techniques for the protection of critical systems

and information against network covert channel attacks. We

implemented supervised machine learning techniques that

demonstrated excellent results for detection. Our collective

research findings can be used to improve methods for the

protection of critical systems against covert channel attacks.

This paper is organized as follows: Section 2 reviews related

works in the field of network covert channel identification

and detection. Section 3 explains our protocol independent

approach to network covert channel detection and the methods

used to generate the experimental network covert channel

datasets. Section 4 presents the results of the research followed

by discussion in Section 5. Section 6 summarizes the paper, its

contributions, and future work to improve upon this research.
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II. RELATED WORK

Covert channels were first defined in research in the study

“A note on the Confinement Problem” by B.W. Lampson

in 1973 [8]. He defined them as channels not intended for

information transfer. Over the last few decades, researchers

have found success with the application of machine learning

techniques for covert channel detection. Sohn et al. [15]

achieved high detection rates in identifying network covert

channels with Support Vector Machines (SVM). The use of

Neural Networks for the detection of TCP Sequence Number

covert channels was also proposed [17]. Their example created

a trained model based on a normalized profile for detection

of anomalous TCP Sequence numbers. The model detected

covert channels by identifying packets containing TCP Se-

quence numbers that did not match the model's profile for that

operating system. They were able to achieve a high level of

precision of approximately 98% accuracy for most operating

system environments in their experiments.

Zander et al. [19] sought to gather the currently known

network covert channel techniques into one collection as well

as methods to detect and eliminate them as reported in their

paper “A Survey of Covert Channels and Countermeasures

in Computer Network Protocols”. The channels were catego-

rized into different types, e.g., header extensions and packet

rate/timing channels. Many methods of detection were ex-

amined including information flow analysis, non-interference

analysis, and covert flow trees. Countermeasures such as

limiting bandwidth, improving network security, and traffic

normalization were explored along with the use of classifiers

for detection.

Wendzel et al. [18] organized patterns of network covert

channels into hierarchical categories derived from 109 differ-

ent covert channel techniques from several different studies.

They found that the majority of covert channel techniques

(69.7%) were based on four distinct patterns that modified

attributes within a network packet. Our work focuses on the

three network storage covert channel patterns that best repre-

sent the majority of known storage covert channel techniques.

Many researchers generated their own network covert chan-

nel datasets for experimentation purposes; however, they are

not available for public use. This fact as well as the need to

focus on specific covert channel patterns led us to generate our

own dataset that serves our evaluation needs. This dataset will

be available upon request for use by the research community.

III. METHODOLOGY

An experimental setting has been created by generating

covert traffic data for the network layer (IPv4), transport layer

(TCP), and application layer (DNS). The dataset includes

covert channel traffic along with regular or benign traffic. To

combat the complexity of network packets and extract the

embedded covert information, we perform feature engineer-

ing in each aforementioned layer. This emphasizes the most

important features for detection by supervised classification.

Further details are provided in the following sections.

Data Acquisition 

Application
Layer Packets

Network Layer
Packets

Feature Engineering

Transport Layer
Packets
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Covert Traffic Generation
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Fig. 1. Framework for Network Covert Channel Detection

A. Covert Traffic Generation

The covert network channel dataset used in this study has

been generated for the TCP/IP protocol with a C program [14]

and for the DNS protocol with the DNS2TCP application [6].

The Wireshark application [5] was used to capture the network

packets for each protocol. Covert traffic data was generated for

the network layer as embedded data in the IPv4 identification

field, the transport layer as embedded covert information in

the TCP sequence number field, and the application layer as

embedded information in the DNS domain name query and

response elements. Feature selection and feature engineering

techniques were applied to process and prepare the dataset for

the proposed generic approach.

In our research, the most effective method for the generation

of the IP and TCP network storage covert channel datasets was

found to be an application developed by Craig H. Rowland

[14]. We modified this program to embed a network covert

channel in the TCP and IP header fields. The program was

compiled in a Linux environment and used along with Wire-

shark to generate and capture both normal and covert traffic

for pattern recognition purposes. The covert channel technique

employed in this dataset involves passing an input stream of

text with one character per packet encoded in a portion of

the IP ID or TCP Sequence Number fields. The final version

of this dataset consists of normal and network covert channel

packets in the TCP/IP protocol, which have been captured and

processed into a numeric data frame.

The DNS dataset has been generated using the DNS2TCP

application with Wireshark for packet capture. In order to use

DNS2TCP to generate realistic data, a virtual environment
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with a web server, client, and virtual network was created

using Microsoft Azure [3] with Ubuntu Server 18.04 as virtual

machine operating systems. DNS2TCP requires a publicly

available domain name to be used for IPv4 web traffic. To

accomplish this, we registered a public domain name through

the Namecheap [4] domain registrar service. For creating a

DNS tunnel outside the internal network, the tool also required

the use of a DNS name server with 2 sub domains to direct

the DNS traffic through. The FreeDNS DNS name service

[1] was used to implement these sub domains. The first

subdomain with a type of NS served as the subdomain address,

e.g., idns1.info.tm, through which the traffic is tunneled. The

second subdomain was of type A with its destination set to

the IP address of the DNS2TCP server. The DNS2TCP tool

was installed on a client to facilitate the generation of the

covert channel. This client had to be supplied with an argument

of the subdomain, e.g., id1.info.tm, specified in the server

application. This establishes the covert channel between the

client and the server as a tunnel through the DNS protocol.

The covert channel communication was then encoded in the

unused space of the query and response domain name fields

of the DNS protocol.

Wireshark was again used to capture the DNS packets of

several hundred DNS2TCP tunneled website visits as well as

normal DNS queries. Next, the covert traffic packets were

combined with normal DNS traffic. These packets were then

processed with feature engineering methods using Python as

described in the following section.

B. Feature Engineering

The captured packets’ complexity as well as differences in

packet fields for each protocol make an additional processing

step necessary to prepare the data for the machine learning

model. After generating the covert network traffic, the first

step was to develop the data processor engine that works with

various OSI layers, excluding the physical layer, by differenti-

ating between protocol specific header elements. In our study,

we used the IPv4 protocol for the network layer, the TCP

protocol for the transport layer, and the DNS protocol for the

application layer. The data processing engine accepts a set of

captured network packets and returns a dataset with a generic

template that is ready to be analyzed for feature selection. The

feature engineering engine is necessary for processing network

traffic packet information to fit into a classifier for further

training and detection. This process involves feature selection

of necessary fields in each protocol as well as transformation

of the packets into the correct format to be read into the model.

After determining the protocol, the necessary features are

extracted from the packet stream. The feature selection uses

a correlation coefficient and domain knowledge to select

features in the dataset [9]. For example, it eliminates TCP/IP

packet elements that are not utilized or suitable for covert

communication, such as the IP Differentiated Services fields

and TCP window size field. The module then returns the

selected features to the engine that focuses on processing

the potentially compromised features, along with the header

elements determined to be necessary for detection. Next,

the engine performs cross-validation. The resulting dataset

containing both normal and covert channel traffic is ready to

run for experimentation with any machine learning technique.

C. Supervised Classification

The processed and labeled network dataset is later fed into

the supervised classification machine learning model to detect

traffic containing network covert channels via analysis and

classification of the data. We experimented with various super-

vised classification techniques, e.g., Logistic Regression, Sup-

port Vector Machines (Linear Kernel and Gaussian Kernel),

K-nearest Neighbor, and Decision Tree. As covert channels

are identified, the malicious packets are logged accordingly.

In our protocol independent approach (as illustrated in Fig.

1), the data processor engine was developed in Python 3.7. The

machine learning models were implemented using scikit-learn,

an open source data mining and data analysis tool [13].

IV. RESULTS

The following sections discuss the generated covert channel

traffic at each of the network, transport, and application layers

as well as detection results.

A. Covert Channel in Network Layer

The IP dataset is composed of normal and covert channel

traffic. The final version of this dataset contains 113,474

observations. This covert channel was hidden in the header

portion of the IPv4 packet by encoding one character per

packet into the unused 16 bits of the IP Identification field

of unfragmented packets as marked in Fig. 2.

Fig. 2. Encoding random covert information in IPv4 Datagram

This dataset was used for training and experimentation with

the following machine learning techniques. Fig. 3 and Fig. 4

depict the evaluation results.

1) Logistic Regression: Analysis of network covert channel

detection for the network layer was first performed with a

logistic regression classifier. This technique was selected to

provide baseline results to compare against the rest of the

techniques used. The logistic regression classifier attained an

accuracy of 81.93% with a low false positive rate. To expand

on those results, the method also achieved an average precision
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of 83% with a statistical result of 81.12% F1 score, 94.97%

precision score, and 70.79% recall score.

2) Support Vector Machine (SVM): Two kernel SVM tech-

niques were used in our experiments: linear kernel and gaus-

sian kernel. The linear kernel method was found more effective

for the detection of covert traffic than the logistic regression

classifier with an accuracy of 87.51%. This method also

achieved a low false alarm rate and lower missing rate (less

occurrences of true negatives). The average precision value for

linear kernel was 88% while F1, precision, and recall scores

were 87.68%, 95.47%, and 81.07% respectively.

The SVM using a gaussian kernel achieved great results,

having an accuracy of 99.78%. This technique was found to

be the most accurate of those tested for the layer, as well as

achieving the highest specificity and sensitivity. The gaussian

kernel classifier achieved an average precision value of 100%,

and its F1, Precision, and Recall score were 99.8%, 99.66%,

and 99.65% respectively.

Fig. 3. Comparison of different supervised classification techniques in the
Network Layer in terms of Accuracy, F1, Precision, and Recall score

Fig. 4. ROC Space for different supervised classification techniques in the
Network Layer

B. Covert Channel in Transport Layer

The TCP covert channel was implemented via embedding

random covert information into the TCP sequence number

field as highlighted in Fig. 5. Similar to the IPv4 dataset,

covert channel and benign traffic was captured for this dataset.

The final dataset contained 112,614 observations. Training

and experimentation with this dataset involved the following

techniques. Fig. 6 and Fig. 7 illustrated the experimental

findings.

Fig. 5. Embedding random covert information in TCP Segment

1) Logistic Regression: The Logistic Regression technique

was utilized to generate baseline results. This experiment

resulted in an accuracy of 64.29%. The classifier achieved

an average precision value of 64% while F1, precision, and

recall scores are 66.68%, 68.86%, and 64.64% respectively.

These results show that this technique would not be suitable

for detection in the network layer.

2) Support Vector Machine (SVM): Similar to the Network

Layer, SVM with both Linear Kernel and Gaussian Kernel

techniques have been used for detection. The accuracy of

linear kernel was 72.29% with zero false negatives. This model

can be used in order to ensure minimum false alarms but is

not appropriate for achieving a high detection rate. The SVM

with Linear Kernel classifier obtained an average precision

value of 78%. In addition, the statistical measurement of this

model was 66.53%, 100%, and 49.85% for the F1, precision,

and recall score.

Gaussian kernel was extremely effective in detecting TCP

covert channels due to its non-linear nature. The model

produced an accuracy of 99.15% with marginally more false

negatives than linear kernel. The model was found to be more

sensitive and specific than previously discussed techniques.

Along with this high accuracy, the classifier achieved an

average-precision value of 99% while F1, precision, and recall

scores were 99.23%, 99.88%, and 98.59% respectively. Due

to these excellent results, this classifier was found to be the

most effective detection technique for the network layer.
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Fig. 6. Comparison of different supervised classification techniques in the
Transport Layer in terms of Accuracy, F1, Precision, and Recall score

Fig. 7. ROC Space for different supervised classification techniques in the
Transport Layer

C. Covert Channel in Application Layer

The Covert channel in the application layer was imple-

mented using DNS protocol communication between the client

and server. The covert communication was encoded both in the

DNS client query and DNS server response name elements

(such fields are marked in Fig. 8).

The generated dataset is composed of both normal DNS

traffic and covert traffic. It was used in experimentation with

the following classification machine learning techniques. Fig.

9 and Fig. 10 portray the experimental findings.

1) Logistic Regression: Logistic regression model gave an

accuracy of 93.22% with zero true negatives. The classifier

also attained an average precision value of 88% with F1,

precision and recall scores of 93.58%, 87.93% and 100%

respectively. These are better results than the logistic regres-

sion technique achieved for the transport or network layer but

not good enough to be considered suitable for a stand-alone

detection technique.

Fig. 8. Encoding random covert information in DNS Query and Response

2) K-Nearest Neighbors (K-NN): The K-nearest Neighbors

model was implemented by specifying the K value as 5

and was more accurate than logistic regression. The accuracy

was 94.74% while the recall rate was flawless. The average

precision value of this classifier was 91% while other statistical

measurements were 95.26% for the F1 score, 90.95% for the

precision score, and 100% for the recall score.

3) Decision Tree: Decision tree classifier was found to be

very effective for detecting the existence of network covert

channels in DNS packets. With an accuracy of 94.96%, the

model achieved a smaller false alarm rate than the K-NN

method. The statistical measurements were improved over the

other techniques as well, having 91% as the average precision

value, 95.45% F1 score, 91.29% precision score, and 100%

recall score. These results proved the effectiveness of Decision

Trees for covert channel detection in the DNS protocol.

Fig. 9. Comparison of different supervised classification techniques in the
Application Layer in terms of Accuracy, F1, Precision, and Recall score
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Fig. 10. ROC Space for different supervised classification techniques in the
Application Layer

D. Summary

Based on our experimental results and analysis, we have

determined a suite of effective techniques for protocol inde-

pendent detection of network covert storage channels in the

network, transport, and application layers. In both the transport

and network layer, the SVM with Gaussian Kernel classifier

outperformed other supervised classification techniques. How-

ever, in our application layer experiments the Decision Tree

technique was found very effective.

V. DISCUSSION

SVM with a gaussian kernel was found to be very effective

for the detection of covert channels in the TCP/IP protocol

suite; however, it was not suitable for the DNS protocol due

to the presence of complex and distributed features. This led

to experimentation with other techniques for the detection

of covert channels within the DNS protocol, resulting in

the decision tree classifier being found the most effective

technique among those experimented with. On a side note,

the DNS dataset required more effort to produce compared to

the other datasets due to the need to set up a virtual server

and network environment to capture packets.

Network covert channels also exist in the data link layer,

which was not examined in our study. Thus, a possibility

for future research would be experimentation with embedded

covert communication in link frames. Other future work that

could be considered to expand upon these findings is exper-

imentation with Neural Networks. In addition, investigating

the approach with covert channel data stored in the payload

of the packet, and timing channels would help expand the

effectiveness of the generic approach described in this study.

VI. CONCLUSION

This paper has described a generic approach for the de-

tection of network storage covert channels. This was accom-

plished by data processing, feature engineering and application

of supervised machine learning classification techniques to

detect network storage covert channels in a protocol indepen-

dent manner. In our experiments, we found that support vector

machine (SVM) with a gaussian kernel was a very effective

technique for covert channel detection in both the network

and transport layers while the decision tree classifier achieved

high results in the application layer. We also described our

approach used in the generation of the IP, TCP, and DNS

covert datasets. The dataset provides the community with a

large network covert channel dataset capturing covert traffic

at various network layers for future research needs and is

available for access by the research community (upon request).
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