
Similarity Analysis of Ransomware based on
Portable Executable (PE) File Metadata

Md. Ahsan Ayub and Ambareen Siraj
Department of Computer Science, Tennessee Tech University, Cookeville, USA

Emails: mayub42@tntech.edu, asiraj@tntech.edu

Abstract—Threats, posed by ransomware, are rapidly increas-
ing, and its cost on both national and global scales is becoming
significantly high as evidenced by the recent events. Ransomware
carries out an irreversible process, where it encrypts victims’
digital assets to seek financial compensations. Adversaries utilize
different means to gain initial access to the target machines, such
as phishing emails, vulnerable public-facing software, Remote
Desktop Protocol (RDP), brute-force attacks, and stolen accounts.
To combat these threats of ransomware, this paper aims to
help researchers gain a better understanding of ransomware
application profiles through static analysis, where we identify a
list of suspicious indicators and similarities among 727 active ran-
somware samples. We start with generating portable executable
(PE) metadata for all the studied samples. With our domain
knowledge and exploratory data analysis tasks, we introduce
some of the suspicious indicators of the structure of ransomware
files. We reduce the dimensionality of the generated dataset
by using the Principal Component Analysis (PCA) technique
and discover clusters by applying the KMeans algorithm. This
motivates us to utilize the one-class classification algorithms
on the generated dataset. As a result, the algorithms learn
the common data boundary in the structure of our studied
ransomware samples, and thereby, we achieve the data-driven
similarities. We use the findings to evaluate the trained classifiers
with the test samples and observe that the Local Outlier Factor
(LoF) performs better on all the selected feature spaces compared
to the One-Class SVM and the Isolation Forest algorithms.

Index Terms—Machine Learning, Ransomware, Static Analysis

I. INTRODUCTION

Ransomware, a special type of malware, is currently one
of the major cyber threats. It is crippling small to large orga-
nizations by primarily encrypting and withholding important
and sensitive digital assets to demand a ransom to release
them. The adversaries are launching ransomware attacks on the
computer systems of government bodies, healthcare, banking
sector, airports, U.S. school districts, etc. to cause alarming
damage to their enterprise resources. A recent (May 2021)
gruesome example of such an attack on the critical infrastruc-
ture system is the DarkSide ransomware attack on the colonial
pipeline network, a company that supplies about half of the
U.S. East Coast’s gasoline. Because of this ransomware-as-a-
service (RaaS) affiliate program’s attack, the Federal Motor
Carrier Safety Administration (FMCSA) announced a state of
emergency in 18 states to tackle the significant fuel shortages.
It is to note that the company has a 5,500-mile pipeline system
with a capacity of carrying 2.5 million barrels of fuel per
day. After several days of investigations on this largest-ever
cyber-attack on an American energy system, as well as paying

US$ 4.4 million worth of bitcoin, the company resumed its
operation after five days of national panic.

The average financial loss for an organization to recover
from ransomware attacks is enormous. The Sophos Labs
reported that the average recovery cost has jumped to US$
1.85 million in 2021 considering downtime, people time,
device cost, network cost, lost opportunity, ransom paid, etc.
while it was US$ 761,106 in 2020. Additionally, it has been
observed that paying the hefty ransom allows the victim
organizations to restore only 65% (approx.) of the encrypted
data [17]. However, the damage caused by such attacks does
not stop in financial loss. Modern ransomware campaigns (e.g.,
Ryuk, Sodinokibi, Nefilim, etc.) involve double extortion –
forcing the victims to meet the criminals’ demands as they
threaten to publicize the stolen sensitive information [13].
Also, the reputation of affected organizations becomes at stake.
Therefore, it is significantly important to empower researchers
with more knowledge that they can use to build effective
defenses against ransomware. In this respect, the two important
research questions addressed in this paper are:

RQ1. Can we identify suspicious indicators from ransomware
samples’ structural information?

RQ2. Is there any PE file metadata-based similarities among
the studied ransomware samples as well as their families?

The potential answers to these questions can help re-
searchers identify ransomware at the beginning of their life
cycle on a victim’s Windows machine before the encryption
process starts. Based on the experimental investigations on
727 active ransomware samples, belonging to 50 families, our
major contributions in this study are as follows:

• We identify suspicious indicators on the generated PE
metadata of ransomware based on the exploratory data
analysis tasks and domain knowledge (see Section 4).

• We leverage the powerful one-class classification algo-
rithms to capture the similarities among all the studied
ransomware samples (see Section 5).

Paper Organization. Some of the background topics are cov-
ered in Section 2. We describe the test dataset and the
methods used in the design of the experimental setting in
section 3. Section 4 and 5 present the details of the empirical
findings on suspicious indicators and the similarities among
the studied ransomware samples. Related research work in the
field of ransomware detection using static analysis techniques

978-1-7281-9048-8/21/$31.00 ©2021 IEEE

is discussed in section 6. A description of the limitations of
our study, along with the future work, is presented in section
7 with a summary in section 8.

II. BACKGROUND

A. Portable Executable (PE) File

The portable executable (or image) file is a common ob-
ject file on the Windows Operating System with extensions
include .exe (executable file), .dll (dynamic link library), .sys
(system file), etc. The files are not architecture-specific and
consist of several containers within their structure, such as
file headers, section tables, import library, etc [22]. The file
header holds important set of information, e.g., the type of
targeting machine, the size of the section table, the time and
date that the file was created, the flags indicating different
attributes of file, etc. In addition, from the Optional Header,
we can read the magic number of the file (that tells us the
image file’s state), the size of code, initialized data, image,
the subsystem required to run the image, DLL characteristics
(a flag value to specify some of the security features for the
PE file), and the address of the entry point (as the executable
file is loaded into the memory). Next, the PE section-related
information appears in the section header, which includes each
section’s virtual address, virtual size, and size of raw data. A
few most common section names are .text (executable code),
.data (read/write data), .idata (import address table), .edata
(export information), etc. The import address table contains
information about both the libraries and the imports used by
the PE file. For example, for one of the studied samples from
Petya ransomware family, we find out that it uses wininet.dll
library, Windows Internet (WinINet) application programming
interface (API), that interacts with 12 imports, for example,
HttpOpenRequest, HttpSendRequest, etc. Similarly, we learn
the exports of the PE file from the export address table.

B. Static Analysis

Static Analysis is a technique that involves examining mal-
ware (e.g., ransomware, in our case) without executing it. This
is an important step to gather any structural details to extract
useful insights of the studied malware file to understand its
capabilities. Our executed tasks include inspecting the infor-
mation of the PE files’ structure, extracting strings, functions,
cryptographic libraries used, and metadata associated with the
samples, scanning the ransomware files with anti-virus engines
through VirusTotal [21], and checking whether the files are
packed used to thwart analysis. We investigate all the studied
ransomware samples inside a VMWare Virtual Box1, where
the host machine runs on macOS while the target machine
operates on Microsoft Windows 10 operating system (64 bit).

C. One-Class Classification

The powerful One-Class Classification technique entails
working with one target / positive class. The goal of the
algorithms that carry out this classification task is to learn
the behavior of a certain set of samples from the same

1https://www.vmware.com/products/fusion.html

domain. By building the learned class boundary from the
training examples, we can allow the models to perform outlier
detection, novelty detection, and concept learning or single
class classification [7]. In this study, we aim to investigate
the effectiveness of identifying clusters/class boundary of all
the studied ransomware samples. Afterwards, we determine
whether we can map any new observations (also known as,
the test set) within the decision boundary. Thus, we explore
finding similarities on a wide range of ransomware variants.

III. EXPERIMENTAL METHODOLOGY

Fig. 1 illustrates the design of our experimental settings that
starts with collection of the dataset and then the generation of
feature set to perform intelligence analysis to derive answers
to the defined research questions.

• VirusTotal
• PE File
• Floss by FireEye
• Feature Extraction

Feature
Set of PE
Metadata

Identification of
Suspicious Indicator

Similarity Analysis w/
Machine Learning

727 (Active)
Ransomware

samples

Fig. 1. Framework of our approach to identify similarities among the studied
ransomware samples based on PE file metadata.

A. Dataset

As mentioned before, we base our study on 727 active
crypto-ransomware samples, primarily collected from Con-
tinella et al. [4], along with other online resources, e.g.,
VirusTotal2 and VirusShare3. It is to note that each sample
belongs to a particular ransomware family, and we assign them
as per the steps described in Ayub et al. [2].

First, we use the VirusTotal API engine [21] to access
the scan report via MD5 hashes. The report consists of the
scan results of more than 50 Anti-Virus engines on average,
and each engine labels one probable family. Therefore, as a
generalized approach, we utilize the AVClass [15], a malware
labeling tool, to determine one ransomware family for each
sample. As a result, we obtain 50 ransomware families, among
which 23 families have more than one sample represented.

B. Experimental Setup

In this section, we describe the steps involved in the
experimentation with the collection of ransomware sample.
Generation of Feature Set of PE Metadata. We execute three
separate tasks to generate the feature sets. First, we gather the
numeric details of how many Anti-Virus (AV) engines, e.g.,
Kaspersky, Symantec, Microsoft, etc., are able to identify the
ransomware sample file as malicious or safe through Virus-
Total API [21]. Then, we utilize the PEFile library, available
as a Python module, to parse through the Portable Executable
(PE) files’ information [3]. To generate the metadata feature

2https://www.virustotal.com
3https://virusshare.com

set with that library, the magic value from the DOS Header
is used to identify whether or not the sample is an executable
file. From the File Header, we access the type of the file (32
or 64 bit), the number of sections, and the characteristics flag.
Then, we collect the size of code, the initialized data, the size
of the image, the subsystem required to run this image file,
and the DLL characteristics flags. From the section header, we
extract the section names, along with each section’s virtual
size and size of raw data. We take note that if the virtual
size is more than the size of raw data, then the section will
allocate more memory space than it has data written to disk.
Additionally, we read and store the Import Table and Export
Table information from each sample. We use a couple of Yara-
based scripts inside our feature extraction built tool to identify
if the sample is packed or uses crypto libraries. At last, we
leverage the FireEye Labs Obfuscated String Solver (FLOSS)
to potentially extract obfuscated strings from the used samples
[1]. With the FLOSS library, we extract the strings from
each sample in three categories: static ASCII and UTF16LE
strings, obfuscated strings, and stack strings. This concludes
the generation of feature sets for all the studied samples. We
develop our feature extraction tool using Python 3.

Analysis of the generated feature set. After the successful
generation of the feature set, we carry out two unique tasks:
(1) identification of any suspicious behavior (described in
section 4), and (2) finding similarity based on the one-class
classification algorithms (reported in section 5). We explore
all the parts of generated feature set to locate data-driven
suspicious behavior using our domain knowledge. We incor-
porate the statistical analysis to identify the highlights of our
key findings. Then, we inspect the effectiveness of obtaining
common clusters to group all the samples. To successfully
perform this task, we leverage three efficient algorithms,
such as One-Class Support Vector Machine (SVM), Isolation
Forest, and Local Outlier Factor (LoF).

IV. OBSERVATIONS OF EXPLORATORY DATA ANALYSIS

At first, we examine all 727 ransomware samples to under-
stand their PE structure based on the static analysis. We report
some of the highlights of the analysis as follows:

• All the studied samples are Non-Executable types of files
that target 32-bit Microsoft Windows machines.

• 16% of the studied samples provide information regarding
when the files were created as well as the type of systems
they require to run on. The majority of such samples
were created in 2006 (the median value) while the latest
one was in 2018. Conversely, we notice that all but one
samples’ images run in the Windows Graphical User
Interface (GUI) subsystem while the other one runs in
the Windows Character User Interface (CUI) subsystem.

• 87% of the studied samples allocate more memory space
in their PE sections than they have data written to disk. It
indicates that the loader can provide a respective section
a chunk of memory space to store variables into it.

• We find that the total unique number of libraries and
imports used by all the studied ransomware samples are

106 and 3, 345 respectively. However, we do not find any
sample that has any presence in the export tables.

• We utilize the VirusTotal API Engine [21] to scan all the
ransomware samples. In general, it is observed that 20%
of the engines report the samples as safe (the median
value). While 6% of the engines labeled one sample
as safe (the lowest value), 44% of the engines labeled
another sample as safe (the highest value).

• We leverage the Yara tool [23], which was designed
to identify and classify malware samples, to find out
if a given ransomware sample uses packer and crypto
libraries. With that, we notice that 4% and 11% of the
studied samples show the usage of the packer and crypto
libraries respectively. Additionally. we observe that the
total unique number of packer and crypto libraries used
by all the studied samples are 11 and 37 respectively.

Addressing RQ1. As mentioned earlier, we generate a list of
unique imports, libraries, and Strings that are used by all 727
ransomware samples. With our domain knowledge, we aim
to analyze each item in the list to derive a set of suspicious
indicators that are frequent in our studied ransomware samples.

Imports. We start with describing the suspicious indicators ob-
tained from the imports. We observe that several ransomware
samples access the mouse or cursor movement Win32 API
libraries, e.g., TrackMouseEvent, GetCursorPos, etc. We fear
that such libraries could be used to monitor whether the user
is active or not. It is reported that the ransomware takes much
longer time to perform its damage on the infected victim
machines [8]. Thus, we suspect that such libraries might be
used to to identify if the user is inactive. In addition to
monitoring user’s activeness, we include the process-based
imports, e.g., TerminateProcess, into our consideration. Due
to the fact that ransomware needs to communicate with its
command and control (C&C) server, we scan the list to gather
a set of imports that are used to make network calls, such
as http, ftp, url, and icmp. We notice that a good number of
ransomware samples check if the process is being debugged by
a user-mode debugger, e.g., IsDebuggerPresent. This approach
is used to determine whether the debugger is present so that
ransomware can prevent itself from execution. It has been
also reported that ransomware uses PowerShell to download
its code, invoke command, create a backdoor, and propagate
its infection to other machines [8]. Therefore, we add shell
execution based imports, e.g., ShellExecuteA, in our list of
suspicious indicators. Since the goal of the ransomware is to
encrypt the files, we include all the file-based imports, e.g.,
LockFile, EncryptFileA, UnlockFile, DecryptFileA, etc., in our
indicators’ list. To summarize, we isolate 670 unique imports
(out of 3, 345) based on the following categories:

• Cursor and/or Mouse. We find it present in 62% samples.
• Network Calls (30% samples). Imports based on http, ftp,

url, and icmp are present in 14%, 12%, 15%, and 17%
samples respectively.

• Shell Execution (13% samples).
• Debugger Presence Checker (30% samples).

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
PCA-1

−1.0

−0.5

0.0

0.5

1.0

PC
A-
2

PE Meta Data with PCA

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
PCA-1

−1.0

−0.5

0.0

0.5

1.0

PC
A-
2

KMeans Clustering Plot (k = 3) with
PE Meta Data

Train
Test

5 10 15 20 25
Number of Clusters (K)

0

25

50

75

100

125

150

175

D
is
to
rt
io
n

Elbow Plot (PE Meta Data)

Fig. 2. Visualization of PE Meta Data with PCA feature space (left) and its KMeans clustering plot (middle) for k=3 – selected from the elbow plot (right).

• Process-based Imports (76% samples). The median count
per sample is 2 while the max count is 12 (out of 39).

• File-based Imports (87% samples). The median count per
sample is 16 while the max count is 60 (out of 223).

Libraries. One of the most common attack vectors of ran-
somware infection to the victim machine is through the remote
desktop protocol (RDP). While examining the libraries used
by the studied ransomware samples, we find out that 19%
samples call wtsapi32.dll. With this library, the application
can leverage the remote desktop service environment during
the run-time. To communicate with C&C server, ransomware
needs to access the Internet. We observe that 15% samples
use wininet.dll - Internet Extensions for Win32, by which the
application interacts with the http and ftp protocols to access
online resources. Ransomware attempts to become aware of
these processes running in the victim machine for different
reasons, such as to terminate the Anti-Virus applications,
to launch its attack while the machine is active, etc. [8].
Furthermore, we notice that 19% samples use psapi.dll -
Process Status Helper API, that help them gain information
about the running processes and device drivers.

Strings. We obtain a list of Strings from the FireEye Labs
Obfuscated Strings Solver (FLOSS) in three categories: Static
Strings, Decoded Strings – with the help of WinDbg debugger
routine [19], and Stack Strings – recovered from the stack with
the help of IDA Pro plugin [5]. We scan each item in the list
to check if it belongs to an English word, and if it does, we
perform further search queries on it. After we complete the
search query tasks, we gather the following notable insights:

• Encryption-based keywords. The case-insensitive search
results show us that “encrypt”, “decrypt”, “RSA”, and
“AES” keywords are present in 16.3%, 25.27%, 48.1%,
and 22.1% samples respectively.

• Ransom-based notice. Similar to above, “payment” or
“pay”, “bitcoin” or “btc”, and “usd” keywords are present
in 14.09%, 7.74%, and 10.5% samples respectively.

• File path. Similarly, “C://” and “/windows” keywords are

present in 6.35% and 7.18% samples respectively.

V. EMPIRICAL FINDINGS: SIMILARITY ANALYSIS

We base our approach to identify similarities among the
studied ransomware samples with several feature spaces, such
as PE Metadata, Imports, Libraries, and PE Sections. The
PE metadata feature space includes the statistic of each PE
file structure, e.g., characteristics, file size, size of code, size
of initialized data, size of image, dll characteristics, and the
number of PE sections, imports, libraries, packer libraries
used, and crypto libraries used.

We begin our analysis by examining the possibility of
finding clusters on this feature set (with a size of 727×11). To
perform this task, we select the KMeans clustering technique
[14] with the Min-Max scaling of the feature values to lie
between 0 and 1. Then, to reduce the dimensionality of the
feature set, we apply the Principal Component Analysis (PCA)
to capture 38.43% and 26.05% of information with the first
and second principal components respectively. As our goal
is to include at least one sample of a given ransomware
family in both the training and testing process, we remove
the observations for families that have got only one sample –
this reduces the size of the entire feature set as 703 × 2 for
27 ransomware family. From there, we take 80% and 20% of
observations as the train and test instances respectively. We
present Fig. 2 to show the feature distribution and the elbow
plot to select the value of k for the KMeans algorithm. From
the plot, we select k = 3 as this is the point before we notice a
roughly linear decrease in the inertia. We additionally include
the visualization of the algorithm’s performance in Fig. 2.

With 3 clusters, we are able to isolate the PE metadata of 27
ransomware families’ samples. This results further motivates
us to carry out the One-Class classification tasks in order to
find the similarities among all 727 ransomware samples.

Addressing RQ2. We select One-Class classification algo-
rithms, e.g., One-Class SVM, Isolation Forest, and Local
Outlier Factor, to identify similarities among the ransomware
files. We explore Imports, Libraries, and PE Sections feature

−4 −2 0 2 4 6 8 10

−2

0

2

4

6

8

10

Imports with PCA using One-Class SVM (Gaussian Kernel)

Learned Frontier
Training Observations
New Regular Observations

−4 −2 0 2 4 6 8 10

−2

0

2

4

6

8

10

Imports with PCA using Isolation Forest (20 Base Estimators)

Training Observations
New Regular Observations

−4 −2 0 2 4 6 8 10

−2

0

2

4

6

8

10

Imports with PCA using Local Outlier Factor (35 Neighbors)

Learned Frontier
Training Observations
New Regular Observations

Fig. 3. Visualization of the learned cluster region of One-Class SVM (left), Isolation Forest (middle), and Local Outlier Factor (right) classifiers for the
Imports with PCA feature space. White points are the training instances while yellow points are the testing instances from one of the 5-fold cross-validations.

spaces to assess each algorithm’s performance in predicting
new variants of ransomware files. That being said, once we
train each model and obtain the learned cluster based on the
training instances, we use two performance metrics to examine
their effectiveness: Error Train – the percentage of training
instances not falling within the cluster and Error Novel – the
percentage of testing instances not falling within the cluster.
For both cases, the lower the scores are, the better. Similar to
the processes described above, we apply the PCA algorithm
after scaling the dataset before the training process. For each
experimental setting, we perform 5-fold cross-validation, and
the reported scores for both metrics as mean values.

TABLE I
PERFORMANCE OF ONE-CLASS CLASSIFICATION ALGORITHMS IN

DIFFERENT EXPERIMENTAL SETTINGS

Algorithm Feature Error Train Error Novel

Imports 8.15% 18.52%
One-Class Imports, Libraries 8.63% 18.11%

SVM Imports, PE Sections 7.88% 18.51%
Imports, Libraries, PE Sections 8.77% 18.53%

Imports 7.50% 26.90%
Isolation Imports, Libraries 6.95% 25.38%

Forest Imports, PE Sections 7.50% 26.90%
Imports, Libraries, PE Sections 7.50% 26.90%

Local Imports 6.57% 10.04%
Outlier Imports, Libraries 6.91% 12.10%
Factor Imports, PE Sections 6.57% 10.04%
(LOF) Imports, Libraries, PE Sections 6.57% 10.04%

We present Fig. 3 to show an example of the learned
clusters derived by each one of the one-class classification
algorithms. The figure illustrates both the training and the
testing instances. Additionally, we can locate whether the
points that fall outside the cluster. We select the Gaussian
Kernel for the One-Class SVM algorithm with 0.3 as an
upper bound on the fraction of training errors and a lower
bound of the fraction of support vectors. For the Isolation
Forest algorithm, we assign 20 base estimators in the ensemble
learning process and tune individual trees that can fit on the
random subsets of the training data sampled with replacement.
At last, we choose 35 number of neighbors for the Local

Outlier Factor algorithm. Table I presents the performances
for these hyper-meter settings of all the selected models. From
the table, we observe that the Local Outlier Factor outperforms
other two algorithms by a small margin for all the combination
of the feature spaces. For instance, with the Local Outlier
Factor and Imports feature space, we achieve 6.57% as Error
Train and 10.04% as Error Novel.

VI. RELATED WORK

Static analysis in the field of ransomware is prevalent as
an initial assessment process to examine the potential threats
a type of malware can pose. In this section, we discuss the
prior work in this area to fight against the ransomware attacks.

The metadata of ransomware samples’ PE file structure is
one of the most popular mechanisms to propose innovative
detection schemes. Security researchers have leveraged the
details of import address table to execute the statistical analysis
tasks based on the frequency of appeared items [6], [18].
Notably, the detection techniques include Association Rule
[12] and Cosine Similarity on DLLs used [10]. Additionally,
we have noticed that a few researchers focused on a set of
selective imports in their study, e.g., interesting DLLs/function
calls [11], encryption-based calls [24], etc. Furthermore, the
Strings metadata has been similarly used to devise impactful
schemes. For example, the researchers explored the presence
of interesting Strings in the ransomware samples, such as
ransom, encrypt, bitcoin, crypto, IP addresses, etc. [9], [16].

In our study, we aggregate the PE metadata of 727 active
ransomware samples, belonging to 50 families, to isolate a
list of suspicious indicators and find similarities among the
generated datasets to detect new variants in the future. We are
motivated that this acquired knowledge will help the dynamic
analysis as per other research work in this field [10], [20].
This will further strengthen the capabilities of the ransomware
detection schemes on Windows machines.

VII. DISCUSSION AND FUTURE WORK

This work has inspired us to include the OpCode and the
HexCode of ransomware samples in order to carry out a

similar experimental study. Due to the exceptional capabilities,
we feel encouraged to apply deep learning techniques to
learn the underlying patterns of such feature spaces’ complex
structure. Inclusion of the benign software that are capable
of encrypting files on the storage, i.e., WinZip, Winrar, etc.,
is also left as one of the future work to investigate the data-
driven dissimilarities with respect to the studied ransomware
files. Additionally, we intend to add more recent ransomware
variants (released after 2019) in our study.

VIII. CONCLUSION

This static analysis-based research study investigates 727
ransomware samples, belonging to 50 ransomware families, to
derive usable intelligence from their portable executable (PE)
format’s structure. We extract the PE metadata to perform our
analysis and primarily select imports, libraries, PE sections,
and strings feature spaces to explore potential answers to the
research questions. Based on domain knowledge, we highlight
a list of suspicious indicators derived from exploratory data
analysis tasks. Furthermore, we find out similarities among
the studied ransomware samples from such feature spaces. We
leverage the One-Class SVM, the Isolation Forest, and the
Local Outlier Factor (LoF) algorithms to execute one-class
classification tasks. We notice that the LoF, obtaining 6.57 in
Error Train and 10.04 in Error Novel, achieves better results.

The aim of our study is to gather the knowledge required
to detect ransomware from its executable file’s structure so
that we can capture its presence before execution. That being
said, failure to successfully accomplish this task will lead
to compromising the digital assets of the victim machine.
Thus, the security researchers and defenders encourage the
organizations to use the 3-2-1 rule, that is to keep 3 back-ups
of their data: 2 on different storage types while 1 on offsite. To
contribute to the cyber defense community, we have published
our implementation, along with the generated feature sets, on
GitHub4 under the MIT license.

ACKNOWLEDGEMENT

We would like to extend our gratitude to Dr. Stacy Prowell
from the Oak Ridge National Lab in Tennessee, USA for his
expert opinions and insights at the initial stage of this research
project. The research work reported in this paper has been
entirely supported by Cybersecurity Education, Research &
Outreach Center (CEROC) at Tennessee Tech University.

REFERENCES

[1] Fireeye labs obfuscated string solver (floss), 2021. URL: https://github.
com/fireeye/flare-floss.

[2] Md Ahsan Ayub, Andrea Continella, and Ambareen Siraj. An i/o
request packet (irp) driven effective ransomware detection scheme using
artificial neural network. In 2020 IEEE 21st International Conference
on Information Reuse and Integration for Data Science (IRI), pages
319–324. IEEE, 2020.

[3] Ero Carrera. Pefile, 2021. URL: https://github.com/erocarrera/pefile.
[4] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio

De Pasquale, Alessandro Barenghi, Stefano Zanero, and Federico Maggi.
Shieldfs: a self-healing, ransomware-aware filesystem. In Proceedings of
the 32nd Annual Conference on Computer Security Applications, pages
336–347, 2016.

4https://github.com/TnTech-CEROC/static ransomware analysis

[5] Jay Smith from FireEye. Flare ida pro script series:
Automatic recovery of constructed strings in malware, 2014.
URL: https://www.fireeye.com/blog/threat-research/2014/08/
flare-ida-pro-script-series-automatic-recovery-of-constructed-strings-in/
-malware.html.

[6] Md Mahbub Hasan and Md Mahbubur Rahman. Ranshunt: A support
vector machines based ransomware analysis framework with integrated
feature set. In 2017 20th International Conference of Computer and
Information Technology (ICCIT), pages 1–7. IEEE, 2017.

[7] Shehroz S Khan and Michael G Madden. One-class classification: tax-
onomy of study and review of techniques. The Knowledge Engineering
Review, 29(3):345–374, 2014.

[8] Ryan Maglaque Magno Logan, Erika Mendoza and Nikko Tamaña.
Trendmicro research: The state of ransomware, 2020. URL: https://www.
trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/
the-state-of-ransomware-2020-s-catch-22/?utm source=
trendmicroresearch&utm medium=smk&utm campaign=0203
StateRansomware.

[9] May Medhat, Samir Gaber, and Nashwa Abdelbaki. A new static-based
framework for ransomware detection. In 2018 IEEE 16th Intl Conf
on Dependable, Autonomic and Secure Computing, 16th Intl Conf on
Pervasive Intelligence and Computing, 4th Intl Conf on Big Data In-
telligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), pages 710–715. IEEE, 2018.

[10] Subash Poudyal and Dipankar Dasgupta. Ai-powered ransomware
detection framework. In 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1154–1161. IEEE, 2020.

[11] Subash Poudyal, Dipankar Dasgupta, Zahid Akhtar, and K Gupta. A
multi-level ransomware detection framework using natural language
processing and machine learning. In 14th International Conference on
Malicious and Unwanted Software” MALCON, 2019.

[12] Subash Poudyal, Kul Prasad Subedi, and Dipankar Dasgupta. A
framework for analyzing ransomware using machine learning. In 2018
IEEE Symposium Series on Computational Intelligence (SSCI), pages
1692–1699. IEEE, 2018.

[13] TrendMicro Research. Ransomware, 2021. URL: https://www.
trendmicro.com/vinfo/us/security/definition/ransomware.

[14] David Sculley. Web-scale k-means clustering. In Proceedings of the
19th international conference on World wide web, pages 1177–1178,
2010.

[15] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero.
Avclass: A tool for massive malware labeling. In International Sympo-
sium on Research in Attacks, Intrusions, and Defenses, pages 230–253.
Springer, 2016.

[16] Saiyed Kashif Shaukat and Vinay J Ribeiro. Ransomwall: A layered
defense system against cryptographic ransomware attacks using machine
learning. In 2018 10th International Conference on Communication
Systems & Networks (COMSNETS), pages 356–363. IEEE, 2018.

[17] Sophos. The state of ransomware 2021, April, 2021. URL: https://
secure2.sophos.com/en-us/content/state-of-ransomware.aspx.

[18] Kul Prasad Subedi, Daya Ram Budhathoki, and Dipankar Dasgupta.
Forensic analysis of ransomware families using static and dynamic
analysis. In 2018 IEEE Security and Privacy Workshops (SPW), pages
180–185. IEEE, 2018.

[19] FireEye Tyler Dean. Flare script series: Automating obfuscated string
decoding, 2015. URL: https://www.fireeye.com/blog/threat-research/
2015/12/flare script series.html.

[20] Deepti Vidyarthi, CRS Kumar, Subrata Rakshit, and Shailesh
Chansarkar. Static malware analysis to identify ransomware properties.
International Journal of Computer Science Issues (IJCSI), 16(3):10–17,
2019.

[21] VirusTotal. Public api v2.0, 2021. URL: https://developers.virustotal.
com/reference.

[22] C+ Visual and Business Unit. Microsoft portable executable and
common object file format specification, 1999.

[23] Yara. The pattern matching swiss knife for malware researchers, 2021.
URL: https://virustotal.github.io/yara/.

[24] Bin Zhang, Wentao Xiao, Xi Xiao, Arun Kumar Sangaiah, Weizhe
Zhang, and Jiajia Zhang. Ransomware classification using patch-based
cnn and self-attention network on embedded n-grams of opcodes. Future
Generation Computer Systems, 110:708–720, 2020.

