
Domain Generating Algorithm based
Malicious Domains Detection

Md. Ahsan Ayub, Steven Smith, Ambareen Siraj, and Paul Tinker
Department of Computer Science, Tennessee Tech University, Cookeville, USA

Emails: mayub42@tntech.edu, smsmith23@students.tntech.edu, asiraj@tntech.edu, and pjtinker42@students.tntech.edu

Abstract—Botnets often use Domain Generating Algorithms
(DGAs) to facilitate covert server communication in carrying
out different types of cyber-attacks. Attackers employ these
algorithms to generate millions of sites for victim machines to
connect to, thus evading defense using blacklists. DGAs enables
attacks to be facilitated without the fear of command and
control (C&C) servers being identified and permanently blocked.
Utilizing the domain fluxing technique, attackers making use of
DGAs can constantly change the domains used by their C&C
servers from one to another in a very short time, whenever they
are blocked. Therefore, automated detection of DGA generated
domains can serve as an essential countermeasure to prevent
malicious botnet communication promptly. In our research,
we devise a comprehensive solution to detect malicious DGA
generated domains used in malware communication. Two distinct
feature extraction methods, the Bigram model and the Word2Vec
model, are applied for text processing in combination with
machine learning and deep learning techniques on a large and
very diverse dataset for DGAs that exist currently, containing
84 different traditional and dictionary-based DGA families. Our
results demonstrate exceptional success in both binary classifi-
cation (classifying a given domain as benign or malicious), and
multiclass classification (identifying the specific DGA variation
or family that produced the domain).

Index Terms—Bigram, Domain Generating Algorithm, Ma-
chine Learning, Malicious Domain Name, Malware, Word2Vec

I. INTRODUCTION

Domain Generating Algorithms (DGAs) is a major tech-
nique for spoofed website domain name creation, which are
used in many modern cyber-attacks, including botnet com-
mand and control (C&C) server communication and phishing
[12]. Additionally, malicious Algorithmically Generated Do-
mains (AGDs) produced by DGAs are often used to flood
network logs with non-existent domains (NXDomain), which
creates issues with manual network log analysis [1]. The
DGA algorithms make use of domain fluxing, a technique
used to query generated domain names rapidly but stealthily
until a response is received from a C&C server. It is also
used to change domain names and/or IP addresses used for
the server in short intervals, which provide short windows
in time for the detection of malicious activities. A DGA
can generate hundreds to millions of potentially malicious
domain names pseudo-randomly using a seed chosen by the
malware author. This allows the attacker to have access to
a massive number of domains, among which a small subset
is then used for communication in any given time frame.
If one domain is blacklisted, the attacker will simply move

the server to one of the other malicious domains from the
same subset. This has significantly reduced the effectiveness of
defense mechanisms, such as blacklisting, reverse engineering,
sinkholing, and preemptive registration of domains [4].

DGAs come in different forms and implementations. They
enable botnets to conduct Distributed Denial of Service
(DDOS) attacks, data exfiltration, and compromise of systems
without detection. With botnets such as Conficker, Kraken, and
Torpig, infected machines can query a large number of domain
names, which appear to be random for C&C connections, e.g.,
http://uurvuqudmnnk1o.com generated by the Bedep malware
family. This type of DGAs is known as traditional. Addition-
ally, attackers also use the Dictionary-Based DGAs technique
that utilizes word dictionaries to create seemingly legit domain
names, making detection methods that look for randomized
domain names render ineffective. This type of DGAs can
appear legitimate to network administrators and users as they
often combine words to appear similar to real domains, e.g.,
http://journeystation.net generated by the Suppobox malware
family. This makes distinguishing between benign domains
and AGDs even more challenging. New methods to detect
botnet communication utilizing DGAs are of high importance
to the security community and hence, the goal of this research.
In this research, we list the following major contributions:

• A detailed experimental analysis of several machine and
deep learning techniques is performed to demonstrate
effective DGA binary and multiclass detection for both
DGA types through the use of two powerful text process-
ing feature extraction methods: Bigram and Word2Vec;

• VirusTotal API engine [10] is utilized for feature creation
along with incorporating feature engineering techniques
to extract features from the sole domain string; and

• A large-scale evaluation on samples from 84 different
DGA families is conducted to show that our approach
can effectively detect 69 different DGA families.

II. DATASETS

We use the Majestic Million list of top-ranked domain
names as our benign ground truth data [5] and DGArchive [9]
as malicious domains dataset containing 84 different malware
families split into 77 traditional and 7 dictionary-based DGAs.

Domain Scanning. We leverage two different techniques to
analyze the dataset: first, we scan each domain using the
VirusTotal API service [10], and then crosscheck whether a



domain returns an NXDomain (non-existent domain) response
when queried through common DNS servers. We develop
a VirusTotal API lookup engine to scan each domain. The
domains flagged as malicious by VirusTotal are far more likely
to be AGDs. We use DNS lookup to determine if the domains
are active. Most of the domains returned NXDomain response
since the domains used by the different DGA Algorithms are
short-lived. The VirusTotal scans reveal that these domains are
often found to be non-malicious. This approach shows that
employing additional detection techniques on top of existing
defense methods helps to combat both types of traditional and
dictionary-based DGAs. We present the results of Virustotal
scans for each malware family’s domain in Table I.

A. VirusTotal Scan Report

As mentioned previously, we utilize the VirusTotal public
API v2.0 to scan every domain in our dataset. This API ser-
vice aggregates information from different antivirus products,
website characterization tools, and website scanning engines.

After receiving the scan report for a given domain URL,
we label the record with three distinct attributes: no records
- when the domain is not known to VirusTotal; safe - when
VirusTotal’s scanning engines suggest a clean or non-malicious
site; and malicious - if any scanning engine detects the domain
as unsafe. Table I provides an analysis of these three attributes
for each malware family. Additionally, we present the ratio of
the number of malicious domains identified versus the total
number of domains in the family for each family. Since the
families only use a small subset of domain names from the
generated domains, scan accuracy is very important. The scan
report yield no results for 46.4% of the malware families (39
out of 84) because the domains were down and not previously
scanned. It provides false-negative results for 25% of the
malware families (21 out of 84) by identifying them as ”safe”.
Accurate results are obtained for only 28.6% of the malware
families (24 out of 84), where the scans flagged them as
malicious. These results are consistent with our intuition that
there would be a much higher percentage of domains with
benign or unknown results due to the short-lived nature of the
DGA domains. This allows many of these domains to escape
detection by the engines before they switch to a different
domain. Additionally, those viewed as benign most likely did
not have a malicious payload. These were simply used for
receiving stolen data or malicious communication rather than
as a tool of compromise machines. In order to best illustrate
these findings, the third column in Table I (Scan Evaluation)
is presented to correlate each family’s scan result with the
previously mentioned attributes.

B. Observation of Characteristics

The following observations are also worthwhile for dis-
cussion. Seven of the malware families are dictionary-based
DGAs: Banjori, Downloader, Gozi, Matsnu, Necurs, Sup-
pobox, and Volatile Ceder while the remaining 77 make use
of traditional DGAs. Out of the 7 dictionary-based DGAs, 4
were particularly concerning since VirusTotal did not flag them

as malicious. Only one dictionary-based DGA (Suppobox)
out of the 7 has been labeled with the malicious attribute.
Additionally, none of the dictionary-based DGAs use numeric
characters in their domain strings. The use of numeric charac-
ters is quite common for traditional DGAs, providing a clear
differentiator between the two types.

Different families have different numbers of unique TLDs
(Top Level Domains) such as .com, .edu, etc. Two malware
families - Necurs and Xxhex generate domains using 44 distinct
TLDs. This is very unusual since other families utilize only
1 to 14 unique TLDs. When checking the NXDomain status
for each DGA family, we found that the number of existing
domains varied from one DGA family to another. There are 10
DGAs that were found to have 20% or more active domains
out of the 84 families. Among this subset, two families were
found to have 100% live or active domains, and two other
families contained over 50% live domains.

Human Engineered Features. Along with extracting the
VirusTotal scan and NXDomain results for each domain for the
use as features in our analysis, we have derived the following
features to develop the machine learning classification models:

• The rounded-up percentage of the ratio of vowels to
consonant, i.e., the value for www.google.com is 50;

• The rounded-up percentage of the ratio of symbols to
letters, i.e., the value for www.google.com is 17;

• The length of the domain string, i.e., the value would be
14 for www.google.com;

• The rounded-up percentage of the ratio of numeric to
letters, i.e., the value for www.google.com is 0; and

• The Top Level Domain (TLD) of the URL, i.e., the TLD
for www.google.com is com.

III. EXPERIMENT METHODOLOGY

We begin our experiment by analyzing the dataset and
extracting human engineered features as per section 2(B). We
then perform two different feature extraction methods applied
to the domain strings: the Bigram model [3] and the Word2Vec
model [6]. Derived vector space of the textual data later fed
into several Machine Learning techniques and a Long Short-
Term Memory (LSTM). The LSTM uses the gate structure to
add/remove information to a cell state by employing a Sigmoid
Neural Net layer (σ) followed by a pointwise multiplication.
It works by ensuring no irrelevant information is passed to
the network. Then, it processes the prior information with the
current information to selectively update the cell state, and
at last, an output gate is placed in the network to return a
transformed version of the cell state [2].

A. Implementation Details

This section describes the implementation of the prototype
method for the detection of DGA-based malicious domains.

Feature Engineering. As mentioned, we use two distinct
approaches to represent the domain corpus. Using Python, we
integrate the Bigram model with Count Vectorizer library of



TABLE I
OVERVIEW OF OUR STUDIED DGA DATASETS’ ASSESSMENT. THE PERCENTAGE CALCULATIONS ARE COMPUTED FROM RESPECTIVE MALWARE

FAMILY’S OBSERVATIONS/RECORDS. THE THIRD COLUMN DENOTES THE PERFORMANCE OF VIRUSTOTAL’S SCAN: IS REPORTING THE URLS MOSTLY
AS MALICIOUS; IS REPORTING THE URLS MOSTLY AS SAFE (WHICH IS ALARMING); AND IS FOR LABELING NO SIGNIFICANCE IN SCAN REPORT.

Malware Scan Type of VirusTotal Scan Report No. of TLDs Live Domain String
Family Evaluation DGA No Records Safe Malicious (distinct) Domains w/o Numeric

Bamital Traditional 99.49% 0.23% 0.28% 3 28% 0%
Banjori Dictionary 0% 31% 69% 1 0% 100%
Bedep Traditional 0% 2.43% / 97.57% 1 0% 51%
Beebone Traditional 0% 1.33% 98.67% 5 1% 0%
Blackhole Traditional 0% 0.36% 99.64% 1 0% 100%
Bobax Traditional 6.92% 0% 93.08% 2 37% 100%
CCleaner Traditional 0% 0% 100% 1 100% 0%
Chinad Traditional 100% 0% 0% 7 0% 0%
Chir Traditional 0% 94.9% 5.1% 2 0% 0%
Conficker Traditional 98.59% 0.51% 0.9% 5 1% 100%
Corebot Traditional 83.97% 6.29% 9.74% 7 26% 0%
Cryptolocker Traditional 100% 0% 0% 7 0% 100%
Darkshell Traditional 70.83% 12.5% 16.67% 1 15% 0%
Diamondfox Traditional 96.38% 1.93% 1.69% 4 0% 1%
Dircrypt Traditional 0% 17% 83% 1 3% 100%
Dnsbenchmark Traditional 100% 0% 0% 1 0% 0%
Dnschanger Traditional 100% 0% 0% 1 0% 100%
Downloader Dictionary 0% 92% 8% 1 100% 100%
Dyre Traditional 100% 0% 0% 8 13% 0%
Ebury Traditional 99.85% 0% 0.15% 3 0% 0%
Ekforward Traditional 90.14% 9.86% 0% 1 0% 0%
Emotet Traditional 100% 0% 0% 1 0% 100%
Feodo Traditional 0% 12.22% 87.78% 1 0% 100%
Fobber Traditional 58.62% 1.1% 40.28% 1 0% 100%
Gameover Traditional 99.98% 0% 0.02% 4 0% 0%
Gameover P2P Traditional 100% 0% 0% 6 0% 100%
Gozi Dictionary 99.85% 0.1% 0.05% 1 0% 100%
Goznym Traditional 12.67% 67.22% 20.11% 1 4% 100%
Gspy Traditional 7.32% 92.68% 0% 1 0% 0%
Hesperbot Traditional 0% 0.67% 99.33% 1 0% 100%
Infy Traditional 100% 0% 0% 3 0% 0%
Locky Traditional 99.43% 0.37% 0.2% 14 0% 100%
Madmax Traditional 23.97% 4.17% 71.86% 4 50% 17%
Matsnu Dictionary 65.18% 26.52% 8.3% 1 16% 100%
Mirai Traditional 40.6% 11.8% 47.6% 3 17% 100%
Modpack Traditional 0% 13% 87% 1 51% 6%
Murofet Traditional 100% 0% 0% 5 0% 100%
Murofetweekly Traditional 100% 0% 0% 6 0% 0%
Necurs Dictionary 99.89% 0.02% 0.09% 44 2% 100%
Nymaim Traditional 55.5% 19% 25.5% 6 10% 100%
Oderoor Traditional 12.17% 7.83% 80% 4 2% 100%
Omexo Traditional 5% 95% 0% 1 0% 0%
Padcrypt Traditional 56.56% 6.64% 36.8% 11 0% 100%
Pandabanker Traditional 85.14% 0.33% 14.53% 2 4% 0%
Proslikefan Traditional 100% 0% 0% 3 0% 100%
Pushdo Traditional 99.92% 0% 0.08% 2 0% 100%
Pushdotid Traditional 77.34% 18.44% 4.22% 5 0% 100%
Pykspa Traditional 79.68% 13.41% 6.91% 4 0% 100%
Pykspa 2 Traditional 51.25% 1.92% 46.83% 6 5% 100%
Pykspa 2S Traditional 0.01% 0.08% 99.91% 6 0% 100%
Qadars Traditional 100% 0% 0% 3 0% 2%
Qakbot Traditional 100% 0% 0% 5 0% 100%
Ramdo Traditional 0% 2.09% 97.91% 1 5% 100%
Ramnit Traditional 0% 21.67% 78.33% 1 1% 100%
Ranbys Traditional 100% 0% 0% 8 0% 100%
Randomloader Traditional 100% 0% 0% 4 25% 100%
Redyms Traditional 0% 82% 18% 1 0% 100%
Rovnix Traditional 99.17% 0.5% 0.33% 5 0% 1%
Shifu Traditional 0% 0.95% 99.05% 2 0% 100%
Simda Traditional 27.5% 67.4% 5.1% 2 0% 100%
Sisron Traditional 100% 0% 0% 4 0% 100%
Sphinx Traditional 98.35% 0% 1.65% 1 0% 100%
Suppobox Dictionary 11.73% 6.83% 81.44% 2 7% 100%
Sutra Traditional 90% 2.15% 7.85% 1 0% 100%
Symmi Traditional 40.34% 2.08% 57.58% 1 0% 100%
Szribi Traditional 99.67% 0.8% 0.25% 1 0% 100%
Tempedreve Traditional 0% 37.5% 62.5% 4 1% 100%
Tempedrevetdd Traditional 5.3% 82.2% 12.5% 4 1% 100%
Tinba Traditional 5.71% 32.08% 62.21% 12 44% 100%
Tofsee Traditional 65.35% 27.95% 6.7% 2 0% 100%
Torpig Traditional 99.84% 0% 0.14% 3 0% 84%
Tsifiri Traditional 0% 0% 100% 1 18% 0%
Ud2 Traditional 63.25% 36.75% 0% 1 0% 0%
Ud3 Traditional 61.66% 36.67% 1.67% 5 2% 0%
Ud4 Traditional 17% 53% 30% 5 20% 100%
Urizone Traditional 0% 0.2% 99.8% 2 1% 8%
Vawtrak Traditional 0% 18.25% 81.75% 3 4% 100%
Vidro Traditional 99.59% 1.41% 0% 3 0% 100%
Vidrotid Traditional 77.33% 1% 21.67% 3 0% 100%
Virut Traditional 92.63% 5% 2.37% 1 2% 100%
Violatilecedar Dictionary 0% 26.5% 73.5% 2 0% 100%
Wd Traditional 100% 0% 0% 2 0% 0%
Xshellghost Traditional 100% 0% 0% 1 0% 100%
Xxhex Traditional 5.95% 90.2% 3.85% 44 7% 0%



Scikit-Learn to convert a corpus to a matrix of token counts
and the Word2Vec model with the Gensim library [7].

Classification Models. While the vector representation of the
Bigram model is fed into several machine learning classifiers,
such as Logistic Regression, Decision Tree, and Artificial
Neural Network (ANN), the Word2Vec model is assigned to
an LSTM network. We build and train Logistic Regression
and Decision Tree Classifiers with a stratified K-Folds Cross-
Validator to avoid overfitting of the models. This removes the
necessity of a validation set. The validator returns folds by
preserving the ratio of samples for each class in the dataset.
We specify 5-fold splits to build both models.

We split the entire dataset for ANN and LSTM models
into 70% training, 20% testing, and 10% validation instances.
Additionally, we perform stratified splits on training and
testing instances to preserve the same percentage for each
target class as in the complete set provided in the dataset. The
ANN network consists of one input layer, two hidden layers
with an activation function of Rectified Linear Units (ReLU),
and one output layer with a Sigmoid activation function for
the binary classification and SoftMax for multiclass classifi-
cation. The LSTM model for both the binary and multiclass
classification have very similar composition, with the primary
changes to be found in the activation and loss functions for
each type of the classifiers with only minor hyperparameter
variation. Including both the Word2Vec embedding input and
the remaining features require two input layers. The Word2Vec
input layer is fed directly into the LSTM layer, which is
constructed using both a dropout and recurrent dropout rate of
0.9 and ReLU as the activation function. Next, the LSTM layer
is concatenated with the remaining features via another dense
input layer. The concatenated data is then fed into another
dropout layer with a rate of 0.9. Then, the data is fed to
another dense (fully-connected) layer, comprised of 64 units
and employing ReLU activation, to increase model complexity.
Finally, the data is fed to the output layer, which employs
a Sigmoid and SoftMax activation function for binary and
multiclass classification respectively.

When compiling both ANN and LSTM, we utilize Bi-
nary Cross Entropy and Sparse Categorical Cross Entropy
for binary and multiclass classification respectively as our
loss function to measure the cost incurred from incorrect
predictions. To achieve the lowest loss in the network weights,
we apply Adam for ANN and Stochastic Gradient Descent
optimizer for LSTM as our adaptive learning rate algorithms.
To improve the generalization of our model on unseen data,
we incorporate the Early Stopping regularization technique
for both ANN and LSTM. In the spirit of open science, our
implementation, along with the datasets, has been made open
source with the MIT License and is available online1.

Model Evaluation. We consider different metrics for eval-
uation, e.g., Accuracy, Precision (measures the ratio of true
positive instances to all positively labeled instances), Recall

1https://github.com/TnTech-CEROC/malicious domains dga detection

(derives the ratio of true positive instances to all instances that
should have been labeled positive), F1 (computes the harmonic
mean of the precision and recall scores).

IV. RESULTS

We present our experimental results in the following two
sections: binary classification and multiclass classification –
predicting which family the domains belong to (benign or
anyone out of the 84 DGA families).

A. Binary Classification

The overall performance of the models is presented in Table
II. We achieve satisfactory results for both feature extraction
methods. However, ANN with the Bigram model performs the
best compared with the other two models in terms of accuracy,
precision score, and F1 score in particular.

TABLE II
PERFORMANCE OVERVIEW OF BINARY CLASSIFICATION TASK AMONG

DIFFERENT BUILT MACHINE LEARNING MODELS.

Model Accuracy Precision Recall F1

Logistic Regression 0.9816 0.9911 0.9993 0.9833
Decision Tree 0.9965 0.9965 0.9988 0.9941

ANN 0.9979 0.9979 0.9979 0.998
LSTM 0.995 0.9949 0.9958 0.994

During our inspection of monitoring the models’ perfor-
mance over the accuracy over epoch and loss over epoch
curves for both ANN and LSTM, we observe that 10 and 6
epochs were used respectively to plot accuracy over epoch and
loss over epoch curves for ANN while 20 epochs we found
to be used for plotting both curves for LSTM.

B. Multiclass Classification

Next, we analyze how well the models perform relating a
domain to a particular malicious family, that is, multiclass
classification. This strengthens our study as we aim not
only to classify the domains accurately but also to further
investigate which families the models fail to detect and why.
We summarize our findings for multiclass classification results
in Table III that presents an overview of all the built models’
performances for each of the studied malware family in terms
of Precision, Recall, and F1 scores. We highlight 15 out
of 84 malware families where the models were unable to
achieve good classification results having precision, recall,
and F1 scores of less than 61% for all of the built machine
learning models. Among these 15 families, none of the models
were able to detect malicious domains from the two DGA-
families, Dnschanger and Randomloader. Additionally, the
table shows the micro average, macro average, and weighted
average values of our findings. Similar to binary classification,
we achieve much better results for ANN compared with the
other two classifiers that use the Bigram model for feature
extraction. The LSTM with the Word2Vec model has achieved
satisfactory performance similar to the other classifiers.



TABLE III
PERFORMANCE OVERVIEW OF MULTICLASS CLASSIFICATION TASK AMONG DIFFERENT BUILT MACHINE LEARNING MODELS.

Malware Total Logistic Regression Decision Tree Artificial Neural Network Long Short-Term Memory
Family Records Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Majestic (Benign) 125, 000 0.9929 0.992 0.996 0.9972 0.9986 0.9979 0.997 0.993 0.9981 0.9968 0.9998 0.9983
Bamital 1, 780 0.9726 0.9972 0.9847 1.0 1.0 1.0 1.0 1.0 1.0 0.9621 0.9972 0.9793
Banjori 1, 130 1.0 1.0 1.0 0.9956 1.0 0.9978 0.9956 1.0 0.9978 0.7092 0.9602 0.8158
Bedep 1,030 0.6404 0.5561 0.5963 0.5806 0.6117 0.5957 0.5056 0.6602 0.5726 0.4167 0.801 0.5482
Beebone 150 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9474
Blackhole 1, 130 0.6098 1.0 0.7516 0.995 0.8894 0.9393 0.9375 0.9292 0.9333 0.8218 1.0 0.9022
Bobax 260 1.0 0.9615 0.9804 0.7903 0.9423 0.8596 0.9423 0.9423 0.9423 0.8644 0.9808 0.9189
CCleaner 12 1.0 0.5 0.6667 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0
Chinad 1, 130 0.6481 0.6222 0.6349 0.9912 0.9912 0.9912 0.8989 0.708 0.7921 0.8856 0.9248 0.9048
Chir 100 0.8 0.4211 0.5517 0.7368 0.7 0.7179 0.72 0.9474 0.8182 1.0 0.4211 0.5926
Conficker 3,130 0.4454 0.4211 0.5517 0.4956 0.5399 0.5168 0.4644 0.7508 0.5739 0.48 0.6342 0.5465
Corebot 1, 130 0.9852 0.8889 0.9346 0.9777 0.969 0.9733 1.0 0.8982 0.9464 0.9883 0.7478 0.8514
Cryptolocker 4, 130 0.5749 0.6279 0.6002 0.6811 0.7058 0.6932 0.7688 0.7688 0.7688 0.6687 0.6501 0.6593
Darkshell 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5556 0.7143
Diamondfox 850 1.0 0.9515 0.9752 1.0 1.0 1.0 1.0 1.0 1.0 0.9643 0.9759 0.9701
Dircrypt 500 0.1852 0.1 0.1299 0.2911 0.23 0.257 0.2719 0.31 0.2897 0 0 0
Dnsbenchmark 4 0 0 0 0 0 0 0 0 0 0 0 0
Dnschanger 100 0.3353 0.6816 0.4495 0.5107 0.6789 0.5829 0.5497 0.3821 0.4508 0.5646 0.9593 0.7108
Downloader 1, 200 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Dyre 650 0.9958 1.0 0.9979 1.0 1.0 1.0 0.9833 0.9916 0.9874 1.0 0.991 0.9958
Ebury 570 0.8978 0.9462 0.9213 1.0 1.0 1.0 1.0 0.9615 0.9804 1.0 0.7538 0.8589
Ekforward 1, 400 1.0 1.0 1.0 1.0 1.0 1.0 0.9127 1.0 0.9544 1.0 0.7478 0.8557
Emotet 1, 080 0.8842 0.9821 0.9306 0.9291 0.9821 0.9549 0.9329 0.9929 0.9619 0.9302 1.0 0.9639
Feodo 725 1.0 0.8056 0.8923 0.9474 1.0 0.973 0.9615 0.6944 0.8065 0.8966 0.7222 0.8
Fobber 180 0.082 0.069 0.0749 0.2941 0.2414 0.2652 0.2456 0.5793 0.345 0.3817 0.3448 0.3623
Gameover 8, 500 0.9657 0.9953 0.9803 0.9988 0.9965 0.9976 0.9988 0.9982 0.9985 0.9918 0.9988 0.9953
Gameover P2P 1, 950 0.9421 0.9689 0.9553 0.8355 0.814 0.8246 0.9074 0.9871 0.9455 0.9399 0.6873 0.794
Gozi 2, 000 0.9603 0.9699 0.9651 0.9066 0.9225 0.9145 0.8982 0.9925 0.943 0.9557 0.755 0.8436
Goznym 360 0.1786 0.0694 0.1 0.1831 0.3562 0.2419 0.3077 0.2778 0.292 0.2564 0.1389 0.1809
Gspy 40 0.3333 0.125 0.1818 0.3333 0.375 0.3529 1.0 0.125 0.2222 0.4286 0.75 0.5455
Hesperbot 150 0 0 0 0.0588 0.0333 0.0426 0.5 0.0333 0.0625 0.3125 0.1667 0.2174
Infy 1, 050 0.9859 1.0 0.9929 1.0 1.0 1.0 0.9589 1.0 0.979 0.972 0.9905 0.9811
Locky 3, 550 0.8578 0.8251 0.8411 0.8565 0.7648 0.808 0.895 0.9 0.8975 0.9193 0.8183 0.8659
Madmax 300 0.9333 0.4912 0.6437 0.8462 0.7586 0.8 0.8772 0.8772 0.8772 0.8727 0.8421 0.8571
Matsnu 4, 050 0.9154 0.9346 0.9249 0.9281 0.8444 0.8843 0.9462 0.9778 0.9617 0.7465 0.8654 0.8016
Mirai 500 0.9804 1.0 0.9901 0.95 0.95 0.95 1.0 0.98 0.9899 1.0 0.99 0.995
Modpack 200 1.0 0.975 0.9873 1.0 1.0 1.0 0.8837 0.95 0.9157 0.973 0.9 0.9351
Murofet 1, 200 0.5121 0.4417 0.4743 0.4686 0.4667 0.4676 0.5335 0.7958 0.6388 0.4154 0.4708 0.4414
Murofetweekly 1, 200 1.0 0.9958 0.9979 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.975 0.9873
Necurs 4, 200 0.9309 0.6893 0.7921 0.7819 0.7726 0.7772 0.9209 0.7619 0.8339 0.9585 0.769 0.8534
Nymaim 1,200 0.3053 0.1208 0.1731 0.3081 0.2573 0.2573 0.6667 0.1833 0.2876 0.4587 0.2083 0.2865
Oderoor 1, 200 0.7094 0.6 0.9501 0.6273 0.575 0.6 0.6976 0.5958 0.6427 0.4956 0.4708 0.4829
Omexo 20 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0 0 0 0
Padcrypt 1, 220 0.9959 1.0 0.998 0.8294 0.7172 0.7692 0.9959 0.9959 0.9959 0.8692 0.4631 0.6043
Pandabanker 1, 200 0.952 0.9958 0.9734 0.9877 1.0 0.9938 1.0 0.9208 0.9588 0.917 0.9208 0.9189
Proslikefan 1, 100 0.8031 0.9498 0.8703 0.8222 0.8409 0.8315 0.8684 0.9 0.8839 0.8 0.9455 0.8667
Pushdo 1, 200 0.9312 0.9583 0.9446 0.9202 0.9125 0.9163 0.9565 0.9167 0.9362 0.8732 0.775 0.8212
Pushdotid 900 0.7833 0.8833 0.8303 0.5099 0.5722 0.5383 0.8111 0.8111 0.8111 0.5441 0.4111 0.4684
Pykspa 1,200 0.227 0.1333 0.168 0.2151 0.1667 0.1878 0.3248 0.2125 0.2569 0.2661 0.1375 0.1813
Pykspa 2 1, 200 0.7547 0.6667 0.708 0.8531 0.75 0.7982 0.819 0.7167 0.7644 0.5424 0.1333 0.214
Pykspa 2S 1, 200 0.7681 0.8417 0.8032 0.8014 0.9414 0.8659 0.7959 0.8125 0.8041 0.4888 0.725 0.5839
Qadars 2, 000 0.9901 0.9975 0.9938 0.9824 0.9775 0.9799 1.0 0.99 0.995 0.879 0.9625 0.9189
Qakbot 4, 000 0.5585 0.5188 0.5379 0.4838 0.4722 0.7412 0.58 0.58 0.6508 0.636 0.4587 0.533
Ramdo 1, 200 1.0 0.9874 0.9937 0.9959 1.0 0.9979 0.9959 1.0 0.9979 0.9677 1.0 0.9836
Ramnit 1, 200 0.4621 0.5333 0.4952 0.3668 0.3958 0.3808 0.454 0.3292 0.3816 0.2727 0.1375 0.1828
Ranbys 2, 000 0.7704 0.755 0.7626 0.8916 0.925 0.908 0.8559 0.7575 0.8037 0.8443 0.8675 0.8557
Randomloader 4 0 0 0 0 0 0 0 0 0 0 0 0
Redyms 30 0.8571 1.0 0.9231 0.8571 1.0 0.9231 1.0 0.5 0.6667 0.8333 0.8333 0.8333
Rovnix 1, 200 0.6713 0.6042 0.636 0.9832 0.975 0.9791 0.742 0.9708 0.8412 0.8821 0.9667 0.9225
Shifu 2, 000 0.9297 0.9925 0.9601 0.9684 0.9975 0.9828 0.9777 0.9875 0.9826 0.9752 0.9825 0.9788
Simda 1, 200 0.9363 0.9925 0.9636 0.9547 0.9475 0.9511 0.9707 0.9925 0.9815 0.8687 0.9925 0.9265
Sisron 1, 200 1.0 1.0 1.0 0.995 1.0 0.9975 1.0 1.0 1.0 0.6711 1.0 0.8032
Sphinx 1, 200 0.6947 0.8875 0.7794 0.7859 0.9175 0.8466 0.8063 0.895 0.8483 0.7671 0.815 0.7903
Suppobox 1, 200 0.9895 0.9796 0.9845 0.9749 0.9725 0.9937 0.9937 0.9838 0.9887 0.9161 0.9875 0.9505
Sutra 2, 000 0.9785 0.6825 0.8041 0.9409 0.995 0.9672 0.8909 1.0 0.9423 0.9184 0.8725 0.8949
Symmi 1, 200 1.0 0.9958 0.9979 1.0 0.9875 0.9937 0.9959 1.0 0.9979 0.9958 0.9958 0.9958
Szribi 1, 200 0.8872 0.9833 0.9328 0.9228 0.9958 0.9579 0.9449 1.0 0.9717 0.7742 1.0 0.8727
Tempedreve 200 0.1875 0.075 0.1071 0.1351 0.125 0.1299 0.2105 0.1 0.1356 0 0 0
Tempedrevetdd 1, 000 0.5323 0.33 0.4074 0.7227 0.86 0.7854 0.75 0.72 0.7347 0.8049 0.825 0.8148
Tinba 2, 000 0.9007 0.9323 0.9163 0.9011 0.82 0.8586 0.9619 0.8825 0.9205 0.9293 0.8875 0.9079
Tofsee 2, 000 0.9859 0.875 0.9272 0.9975 1.0 0.9988 1.0 0.9975 0.9987 0.9195 1.0 0.9581
Torpig 1, 200 0.9286 0.3792 0.5385 0.8968 0.9417 0.9187 0.9835 0.9958 0.9896 0.681 0.9875 0.8061
Tsifiri 50 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0 0 0 0
Ud2 2, 000 0.9824 0.975 0.9787 1.0 1.0 1.0 1.0 1.0 1.0 0.9926 1.0 0.9963
Ud3 60 1.0 0.6667 0.8 0.9167 0.9167 0.9167 1.0 1.0 1.0 1.0 0.5833 0.7368
Ud4 100 0.9048 0.95 0.9268 0.9167 0.55 0.6875 0.9333 0.7 0.8 1.0 0.4 0.5714
Urizone 2, 000 0.8762 0.885 0.8806 0.9206 0.87 0.8946 0.8701 0.8875 0.8787 0.9008 0.885 0.8928
Vawtrak 2, 000 0.8017 0.94 0.8654 0.7108 0.59 0.6448 0.866 0.905 0.8851 0.6938 0.64 0.6658
Vidro 1,275 0.4591 0.3961 0.4253 0.4304 0.3882 0.4082 0.6909 0.4471 0.5429 0.5164 0.4314 0.4701
Vidrotid 400 0.5 0.2833 0.3617 0.1136 0.0833 0.0962 0.9 0.15 0.2571 0 0 0
Virut 3, 200 0.8624 0.9413 0.9001 0.9326 0.9686 0.9502 0.9196 0.9471 0.9331 0.9359 0.98 0.9574
Violatilecedar 500 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0 0.995 0.9515 0.9899 0.9703
Wd 1, 200 1.0 1.0 1.0 1.0 1.0 1.0 0.995 1.0 0.9975 1.0 1.0 1.0
Xshellghost 35 0 0 0 0 0 0 1.0 0.1429 0.25 0 0 0
Xxhex 2, 000 1.0 1.0 1.0 0.995 1.0 0.9975 0.9975 0.9875 0.9925 0.9258 0.9975 0.9603

Micro Avg. 0.9147 0.9147 0.9147 0.9211 0.9211 0.9211 0.9358 0.9358 0.9358 0.9104 0.9104 0.9104
Macro Avg. 0.7882 0.7574 0.7629 0.7754 0.7755 0.7734 0.8128 0.7657 0.7692 0.7174 0.6924 0.6914
Weighted Avg. 0.914 0.9147 0.9116 0.921 0.9211 0.9205 0.9388 0.9358 0.9343 0.9069 0.9104 0.9045



V. LIMITATIONS AND FUTURE WORK

As per the discussions in the Results section, the multiclass
models achieved poor performance for prediction of malicious
domains belonging to the following 15 families (all traditional
DGAs) out of 84: Bedep, Conficker, Dircrypt, Dnsbenchmark,
Fobber, Goznym, Gspy, Herperbot Nymaim, Pykspa, Random-
loader, Tempredreve, Vidro, Vidrotid, and Xxshellghosht. In
search of probable reasons behind this result, we observe that
only 5 out of 15 generated an adequate number of domains for
the models to effectively train, while the rest had a very limited
number of domains (less than or equal to 300) present in our
dataset. We also found that there was significant randomness
in the malicious domain examples for the following 5 malware
families: Bedep, Conficker, Fobber, Nymaim, Pykspa, and
Vidro, which might have caused the inaccurate multiclass
classification. More examples of these families in training may
lead to finding more unique and decisive patterns. Therefore,
we concluded that the lack of a representative training dataset
is the primary reason behind the classifiers failing to produce
better results for this particular dataset we use in our research.

VI. RELATED WORK

DGA based domain detection has been heavily studied in
the past. Yadav et al. [12] explored methods for detecting
DGA domains in their research, focusing on traditional DGA
domains. For feature engineering, they have employed K-L
Divergence with Unigram distribution, Jaccard measure of
Bigrams, and Edit-Distance. For the classification of domains
queried on a network as malicious or benign, researchers have
used LASSO or L1-Regularized Regression as a supervised
machine learning technique. The models’ results were com-
pared against external sources such as McAfee Site Advisor
to confirm if those detected as malicious were accurate. The
use of external resources to confirm a site’s malicious identity
is also demonstrated in our research as we compare domains
in our dataset against VirusTotal’s database [10].

Deep Learning networks have been used for the successful
detection of DGAs in previous research, especially in the case
of Dictionary-based DGAs. Woodbridge et al. [11] applied
LSTM networks to the problem of real-time detection of DGA
domains. An advantage of their LSTM network was being able
to create the model without any manual feature classification.
They also classified which domains belonged to specific mal-
ware families. They achieved a 90% detection rate with good
Precision. Pereira et al. [8] focused on Dictionary-based DGA
detection. They also created dictionaries for each malware
family by extracting words used in domains generated by
various malware families with their WordGraph method. The
WordGraph method consisted of utilizing feature engineering
to create a graph of the words in the domain names, and
cluster these together into different groups. The more tightly
knit groups represented different DGA families.

VII. CONCLUSION

In this research, we develop a suite of effective detection
mechanisms for both traditional and dictionary-based DGAs.

We analyze 84 different malware families’ dataset with the
Virus-Total API service to verify the status of each malicious
domain through multiple Antivirus scan engines. We utilize
the DNS queries to determine whether or not a domain is a
non-existent domain (NXDomain) and hence, short-lived. We
extract useful features to further analyze the domain strings.
The Bigram model was used with several Machine Learning
techniques, such as Logistic Regression, Decision Tree, and
Artificial Neural Network (ANN) while the Word2Vec model
was used with Long Short-Term Memory (LSTM). We observe
that both binary and multiclass classification tasks with the
built models demonstrate satisfactory detection results. When
compared to the other two Machine Learning classifiers, the
ANN method with the Bigram model performed the best
with an accuracy of 99.8% in detecting benign and malicious
domains and 93.58% in classifying domains belonging to
specific malware families. The performance of the LSTM
is almost identical with an accuracy of 99.5% in binary
classification and 91.04% in multiclass classification.

ACKNOWLEDGEMENT

The entire work has been supported by the Cybersecurity
Education, Research & Outreach Center (CEROC) and the
College of Engineering (CoE) at Tennessee Tech University.

REFERENCES

[1] Hyrum S Anderson, Jonathan Woodbridge, and Bobby Filar. Deepdga:
Adversarially-tuned domain generation and detection. In Proceedings of
the 2016 ACM Workshop on Artificial Intelligence and Security, pages
13–21. ACM, 2016.

[2] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[3] Thorsten Joachims. Text categorization with support vector machines:
Learning with many relevant features. In European conference on
machine learning, pages 137–142. Springer, 1998.

[4] Marc Kührer, Christian Rossow, and Thorsten Holz. Paint it black:
Evaluating the effectiveness of malware blacklists. In International
Workshop on Recent Advances in Intrusion Detection, pages 1–21.
Springer, 2014.

[5] Majestic Million Majestic, 2019. URL: https://majestic.com/reports/
majestic-million/.

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[8] Mayana Pereira, Shaun Coleman, Bin Yu, Martine DeCock, and Ander-
son Nascimento. Dictionary extraction and detection of algorithmically
generated domain names in passive dns traffic. In International Sympo-
sium on Research in Attacks, Intrusions, and Defenses, pages 295–314.
Springer, 2018.

[9] Daniel Plohmann, Khaled Yakdan, Michael Klatt, Johannes Bader,
and Elmar Gerhards-Padilla. A comprehensive measurement study of
domain generating malware. In 25th {USENIX} Security Symposium
({USENIX} Security 16), pages 263–278, 2016.

[10] VirusTotal. Public api v2.0, 2019. URL: https://www.virustotal.com/en/
documentation/public-api/.

[11] Jonathan Woodbridge, Hyrum S Anderson, Anjum Ahuja, and Daniel
Grant. Predicting domain generation algorithms with long short-term
memory networks. arXiv preprint arXiv:1611.00791, 2016.

[12] Sandeep Yadav, Ashwath Kumar Krishna Reddy, AL Reddy, and
Supranamaya Ranjan. Detecting algorithmically generated malicious
domain names. In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pages 48–61. ACM, 2010.


