
2019 22nd International Conference of Computer and Information Technology (ICCIT), 18-20 December, 2019

Parallelized RSA Algorithm: An Analysis with
Performance Evaluation using OpenMP Library in

High Performance Computing Environment
Md. Ahsan Ayub∗, Zishan Ahmed Onik†, Steven Smith‡

Department of Computer Science
Tennessee Technological University

Cookeville, USA
{mayub42∗, zonik42†, smsmith23‡}@students.tntech.edu

Abstract—RSA algorithm is an asymmetric encryption algo-
rithm used to maintain confidentiality and integrity of data
as it is transported across networks. As time has gone on,
security and confidentiality has grown in importance leading
to more data requiring encryption. Parallelization has become
an important aspect in improving the speed and efficiency of
processing for encryption algorithms. Improvements in parallel
implementations of the RSA algorithm lead to better security
and efficiency for parallel systems utilizing the algorithm. In this
study, we present a comprehensive survey of methods proposed
by researchers for parallelization of the RSA algorithm from 1978
till date. This survey aims to provide a deeper understanding
of the possible avenues that can be considered to obtain better
performance of the RSA algorithm in parallel environments. To
demonstrate the improvements, this paper presents a parallel
CPU-based implementation of the RSA algorithm using the
OpenMP library. This implementation focuses on parallelizing
the exponentiation operation of the algorithm. To provide a
robust analysis, the study makes use of a High Performance
Computing environment to illustrate results for different scenar-
ios in terms of parallel processing units. Through experimental
analysis, the implementation is shown to have greatly improved
execution times when compared against serial implementation.

Index Terms—Asymmetric Key Encryption, Cryptography,
Parallel Computing, Public Key Encryption, RSA

I. INTRODUCTION

Encrypting and decrypting data at a higher speed has
become an important issue in almost every application that
employs cryptographic techniques. It is not only important
to ensure no breach of confidentiality and integrity of the
communication, but also significant to obtain improved speed
in encryption and decryption of the data [7]. The prime motiva-
tion of designing and implementing cryptographic algorithms
is to make the encrypted information unreadable without the
key. In addition, the message / data passing between sender
and receiver will remain secret from the outside world as well
as its data integrity and origin integrity can be checked during
transmission.

Based on the keys used, cryptographic algorithms can be
classified as symmetric or asymmetric encryption. On a higher
level, symmetric encryption is designed to perform encryption
with one private key shared between the sender and receiver.
This key is used to encrypt plaintext by the sender and

decrypt the cipher text by the receiver. The main concern is
passing the key through a secure channel. The process usually
completes at high speed with a low storage overhead [19].
This process is specified in IEEE 802.15.4 standard. On the
other hand, asymmetric encryption is designed to carry out its
tasks with two separate keys: a public key, which is derived
from a mathematical function and a private key, which is
mathematically linked to the public key. The public key is used
to encrypt plaintext or to verify a digital signature; whereas
the private key is used to decrypt cipher text or to create
a digital signature. Decrypting the ciphertext using a public
key will show a different message. Although sharing of the
key is not required for this technique, the overall process is
computationally intensive. A few notable goals of asymmetric
key cryptography are [28] -

• The process of encrypting and decrypting a message will
be computationally feasible.

• Deriving the private key from the public key of a partic-
ular user should be computationally infeasible.

• Deriving the private key from a chosen plaintext should
also be computationally infeasible.

A classic example of asymmetric encryption is the RSA
algorithm, which was invented by Ronald Rivest, Adi Shamir,
and Leonard Adleman in 1978 [32]. The algorithm is designed
to ensure communication remains private after the sender
encrypts the message with two keys: sender’s private key
and receiver’s public key. The public and private key pair
is mathematically related and generated together so that the
message can be encrypted by the sender, and the recipient can
decrypt the message. It ensures a third party who is able to see
the message will not understand the communication between
two parties. Thus, the communication can be made private
even when the underlying channel is insecure.

Due to the benefits of the RSA algorithm, the necessity of
faster implementations will continue to grow. In our study, we
explore the avenues of parallelization of the RSA algorithm in
a high performance computing environment. Thus, the main
contributions of our paper are -

• A comprehensive survey of the types of work that have

978-1-7281-5842-6/19/$31.00 ©2019 IEEE

already been proposed as well as explored by researchers
and industry professionals in this domain.

• Serial and parallel implementations of the RSA algo-
rithm. The parallel implementation utilizes the OpenMP
library in a high performance computing environment.

• In the spirit of open science, our developed tool has made
open source for everyone’s use and available online at
https://github.com/AhsanAyub/RSA Parallelization.

The rest of the paper is organized as follows: Section 2
provides an overview of the RSA algorithm. Section 3 explains
our experimental methods to implement both sequential and
parallelized approach of this public key encryption technique.
Section 4 presents the results of our research. Section 5 con-
sists of a comprehensive review of related work in this domain
which can be considered as a foundation for further research,
followed by discussion in section 6. Section 7 summarizes the
paper, its contributions, and future work to improve upon this
research.

II. RSA ALGORITHM

The RSA algorithm is a public key cryptography technique
where two keys (private and public) are used to both encipher
and decipher the message, M . In order to encrypt M , the
sender uses a pair of public encryption keys (e, n), where
both e and n are positive integers and e < n. Decrypting the
message, M requires a decryption key pair (d, n), where d
is private key. To elaborate further, the sender enciphers the
message with his / her own private key (to ensure integrity)
first and then the receiver’s public key (to confirm confi-
dentiality). Conversely, the receiver deciphers the message
with his / her own private key (which verifies confidentiality)
and then the sender’s public key (to confirm both origin and
message integrity). Thus, the RSA algorithm employs double
encipherment on the sender’s part and double decipherment
on the receiver’s part. The encryption, E and the decryption,
D processes are more formally defined as [32] -

C = E(M) = (Md(sender) mod n)e(receiver) mod n (1)

M = D(C) = (Cd(receiver) mod n)e(sender) mod n (2)

where C is the ciphertext and M is the message (or
plaintext) as well as both are integers in the form of 0 to
n− 1. It is assumed that the encipherment process is done by
the sender in the equation 1 while the decipherment process
is done by the receiver in the equation 2.

By following the steps mentioned in the Algorithm 1, both
the sender and receiver will be able to derive the public key
pair (e, n) separately, which are public knowledge and private
key d, that is known only to the owner of the private key. Then,
both the sender and the receiver will be able to encrypt and
decrypt the message from the equation 1 and 2 respectively.

Selecting two random large prime numbers p and q depends
upon the users, but the larger the numbers are, the more
difficult it becomes to crack the encryption. The values have
to be large enough so that deriving the value of n can become
computationally infeasible for every possible values of p and q.

Algorithm 1 Mathematical Operations in the RSA Algorithm
Input: p, q
Output: n, e, d

1) Choose two large prime numbers, p and q
2) Compute: n = p× q
3) Compute: Euler totient function [29], φ(n) = (p− 1)×

(q − 1)
4) Choose 1 < e < n such that e is relatively prime to

φ(n)
5) Compute: d = e−1 mod φ(n)

Rivest et al. [1978] suggested the use of 100-digit (decimal)
values for p or q. In addition, the users have to choose the
value of k as well; however, the its value will be less than
2log2(n) [32]. If these conditions are properly met, cracking
the RSA algorithm has been proven to be extremely difficult
through cryptanalysis [21].

III. EXPERIMENT METHODOLOGY

The experimental setting of this study has been conducted
by implementing the RSA algorithm sequentially first, fol-
lowed by finding the avenue where it could be further im-
proved on with the aid of parallelization in a high performance
computing environment. We base our analysis on encrypting a
sequence of characters which is passed to our RSA encryption
implementation. As per the previous suggestions, we specify
the values of p and q as large prime numbers, which gives
us a larger computed value for n. Thus, the computation of
the key pair (e, d) according to Algorithm 1 becomes easier.
The double encryption and decryption method is ensured by
following Equation 1 and Equation 2 respectively for the
communication of the sender to the receiver. However, it
should be noted that the underlying medium of communication
and key sharing protocol are out of scope for our study.

The exponentiation operation takes notable amount of time
as the values of e (the public key) and / or d (the private key)
are big enough to make the encryption process computation-
ally intensive. Table I is a sample output case for a classic
sequential approach of the RSA encryption algorithm that
illustrates how large the private key, d would be to perform the
exponentiation operation for decryption process in this case.

Due to the fact that exponentiation operations increase com-
putational time of the encryption and decryption process of the
RSA algorithm, the parallelization of these operations seem
significant to aid faster computation in terms of encipherment
and decipherment of the message. We design our approach to
parallelize RSA algorithm with a focus on the exponentiation
operations (Equation 1 and Equation 2). Specifically, we aim
to achieve improvement in performance by partitioning the
exponentiation task among different independent processing
elements. For example, the integer ASCII conversation for the
plaintext, “A” is 65. Let us assume, the private key is 20.
We can divide the exponentiation task, 6520 among multiple
threads. If we partition the task among 4 threads, each thread
will compute 654. Then, the results from each thread will

1 2 3 4 5 6 7 8

Number of Threads

1

2

3

4

5

6

7

8
S

p
e
e
d

 U
p

Speed Up Curve

Experimental

Ideal

1 2 3 4 5 6 7 8

Number of Threads

0.5

0.6

0.7

0.8

0.9

1

E
ff

ic
ie

n
cy

Efficiency Curve

Fig. 1. Speed up curve and efficiency curve of our approach for the parallelized RSA encryption algorithm

TABLE I
AN EXAMPLE OUTPUT CASE FOR RSA ALGORITHM

p
121310724392112718973236715316124404284724276337014109256
345493123019643734208561932419736532241686654101705736136
5214171711713797974299334871062829803541

q
120275242554787488859562207937345121287333878036820754336
538999839551798509887978998691469008091316111533468170508
32096022160146366346391812470987105415233

n (derived from n = p× q)
145906768007583323230186939349070635292401872375357164399
581871019873438799005358938369571402670149802121818086292
467422828157022922076746906543401224889672472407926969987
100581290103199317858753663710862357656510507883714297115
633427889114635351027120327651665184117268598379886721118
37205085526346618740053

φ(n) (derived from φ(n) = (p− 1)× (q − 1))
145906768007583323230186939349070635292401872375357164399
581871019873438799005358938369571402670149802121818086292
467422828157022922076746906543401224889648313811232279966
317301397777852365301547848273478871297222058587457152891
606459269718119268971163555070802643999529549644116811947
516513938184296683521280

e (selected from 1 < e < n such that e is relatively prime to φ(n))
65537

d (derived from d = e−1 mod φ(n))
894894250092744443682285459217730939196695860658842574454
978544564876748396298183909349419732628796167979706089172
836798754993315741611138540888132754881105882471930775825
272784379065040156806234235500672400424666656542323835029
222154936232894721388664458187891279461234078077257026266
44091036502372545139713

need to be multiplied to compute the final exponentiation
value. In our study, we demonstrate success in reducing the
computational time of the program as we increase the number
of threads / processing elements. It is worthwhile to note that,

this is the only avenue we observed in the RSA algorithm that
is most suitable for parallelization.

We have built our parallelized RSA encryption algorithm
tool using the OpenMP library [4] and run our experiments
in the high performance computing cluster or environment of
Tennessee Technological University [5] in order to test and
evaluate our analysis. To streamline and perform encryption
as well as decryption of any given plaintext passed in our
tool, we have used GNU Multiple Precision Arithmetic Library
(GMP) [3]. We measure two performance metrics to illustrate
our experimental findings: Speed Up (as shown in Equation
3) and Efficiency (as shown in Equation 4). This enables us
to compare how effective the parallelized approach is against
the sequential approach.

Speed Up, S =
TS
TP

(3)

Efficiency, E =
S

p
(4)

where TS is the run time of the sequence implementation,
TP is the run time of the parallel implementation, and p is
the number of processors. These equations will be referred to
when computing the speed up and efficiency of each parallel
execution of the RSA algorithm.

IV. RESULTS

The experimental findings of our research are discussed
with an input of a random string-based plaintext which is
first converted to the numerical ASCII value of each letter
and then certain computations are performed for every letter
as described in the methodology section. It is to note that
the variant of input strings do not impact the speed up and
efficiency for our developed tool; only the execution time will
be different. We analyze our results for a large integer input
of ”528733642850100297336123456789018.”

The OpenMP library has allowed us to split the parallelized
implementation of RSA algorithm into several processing
elements. We observe the execution time of the program,
performing both successful encryption and decryption of the
input, three times for different thread counts, such as, 1, 2, 4,
and 8, in a single physical CPU machine or node. Next, we
compute the average run time of each execution which is used
to derive the values of the speed up and efficiency. We present
Table II to illustrate our findings for each thread count in terms
of run time (in milliseconds), speed up, and efficiency.

TABLE II
EXECUTION CASES OF THE RSA ALGORITHM

Threads 1st Run Time 2nd Run Time 3rd Run Time Avg. Run Time Speed Up Efficiency
1 4.5 4.7 4.6 4.6 1.00 1.00
2 2.7 2.6 2.5 2.6 1.782 0.891
4 1.7 1.5 1.6 1.6 2.8688 0.7172
8 1.0 1.1 0.9 1.0 4.4033 0.5504

Due to the fact that not every portion of the RSA algorithm
can be parallelized, the speed up values are less than the ideal
case. However, the execution time for each case decreases as
the number of the processors increase. We present Fig. 1 to
depict the speed up and efficiency curve for each execution
case of our experiment. This shows that the RSA algorithm
is not by nature a classic parallel solution like the Matrix
Multiplication problem [41]. As the number of processors
are increased, the experimental speed up values seem to be
moderately increased for our study. Similarly, the efficiency
decreases as the number of processors increase.

However, the execution times for each case show that it is
possible to improve the performance of the RSA encryption
algorithm as we tend to get lower execution time by increasing
the number of processors. We have been able to bring down
the execution of RSA algorithm from 4.6 seconds with a
single thread to 1 second with 8 threads. This proves a
faster implementation of this algorithm is achieved and worth
exploring further. Additionally, this shows how our approach
effectively reduces the execution time through parallelization
of the RSA algorithm.

V. RELATED WORK

Pearson [30] examined portions of the RSA algorithm that
would benefit from parallelization. His paper focused on paral-
lelization of the encryption and decryption process by allowing
each parallel element to handle a portion of the processing,
increasing the overall throughput of the algorithm. Specifically,
he found that the squaring operation. The squaring operation
in the equation 1 and 2 could be performed simultaneously
with other sequential processes such as multiplication. Other
researchers found that several multiplication operations in the
algorithm could be implemented with asymptotically faster
multiplication algorithms such as FTT and Karatsuba [22]
leading to improvements in efficiency. Imbert and Bajard
[6] focused on implementation of an efficiency Montgomery
Multiplication Algorithm based on the Reside Number System
(RNS). This enabled them to obtain faster arithmetic opera-
tions in parallel. They created 2 types of RSA implementations

to illustrate their approach. Additionally, their results were
compared against those achieved by Kawamura et al. [20] and
Posch and Posch [31] in terms of the number of elementary
modular multiplications needed for their implementations of
Montgomery multiplication. Li et al [24] proposed a variant
to the traditional RSA implementation they called EAMRSA
or Encrypt Assistant Multi-Prime RSA. This was based on a
combination of the Multi-Prime RSA [12], [9] and RSA-S2
[27] proposed by previous researchers. This model is made
up of three main components: key generation, encryption, and
decryption. Key generation generate the private and public
key pair with four parameters including a security-specific
parameter. The encryption process and decryption process
differ as the encryption process is done in two steps while
the decryption process is performed with the Chinese Re-
mainder Theorem [14]. This approach has also considered
parallelization in terms of data and task decomposition. The
data composition is performed with the private and public key
as well as the plaintext and ciphertext. Task decomposition
focuses on splitting the encryption and decryption processes
across the parallel processing elements. Their results were
compared against various sequential RSA implementations in
terms of speed up.

Chiou [11] addressed the problem of modular exponen-
tiation of the RSA algorithm. In his studay, he outlined a
modular exponentiation approach based on the parallel binary
method. This approach led to more efficiency in the encryption
and decryption processes, leading to a roughly 33% process
speed increase. He concluded that the technique could be
merged with other parallelization techniques for larger im-
provements to processing speed. Wu et al. proposed a parallel
exponentiation algorithm which was said to be faster than the
efficient Savas-Tenca-Koc algorithm [34]. In the paper, they
described 2 binary methods for the exponentiation operations
(e.g. equation 1 and equation 2) in the RSA algorithm. These
were the right to left binary method and the left to right binary
method [37], [8]. Additionally, they detailed exponentiation
techniques proposed by other researchers [18], [35], [33] and
compared their performance to their newly proposed approach
based on speed up, with results ranging from 1.06 to 2.75.
They were also able to decrease the number of multiplication
and squaring operations I norder to improve the efficiency
of the exponentiation evaluation. A novel exponentiation
technique was proposed by Sepahvandi et al. [36] in 2009
that performed the squaring and multiplication operations of
the RSA algorithm in parallel leading to a 50% increase
in speed. In their paper, they have shown the traditional
method used for the modular exponentiation operation in
RSA has been performed either with the binary method or
a traditional arithmetic-based method [43], [38], [10], [37].
Their approach managed to split these operations up into
parallel components that could be computed simultaneously,
resulting in a minimal number of sequential steps needed
to derive the ciphertext and plaintext. Damrudi and Ithnin
created a method to improve the parallelization of the RSA
algorithm through a tree based approach called TRSA [13].

This approach utilizes a binary tree based parallel processing
architecture to split exponentiation operations into a number
of nodes. They compared their results against Sepahvandi et
al. [2009] [36], Montgomery [39], Bielecki and Burak [2007]
[7], and CRT [23], demonstrating improvements in terms of
speed up and reduced computational complexity. The speed up
results were measured by comparing the serial version of the
RSA algorithm against their parallel implementation utilizing
the OpenMP library [4].

Other researchers sought special hardware-based solutions
for improved RSA parallel processing speed. Liu et al. [25]
proposed the use a systolic, array-based VLSI enabled ar-
chitecture as the RSA crypto processor for the Montgomery
Multiplication Algorithm as well as the square and multiplica-
tion portions of the algorithm. This architecture was designed
as a two-stage access scheme along with a single backup
scheme in order to eliminate the fanout bottleneck. They
claimed thus architecture would be more efficient than past
architecture implementations. In 2004, Tang et al. proposed
the user of a Field Programmable Gate Array (FPGA), a
reconfigurable hardware device for use in a semi-systolic
implementation of the modular exponentiation unit as part of
a parallel implementation of the RSA algorithm [40]. This
hardware design addressed the time intensive issue of modular
exponentiation operations in RSA. Their approach to serial-
parallel multiplication utilized the left to right binary method
to improve efficiency. The RSA processor itself was imple-
mented with Very High-Speed Integrated Circuit Hardware
Description Language (VHDL) using automatic Place-and-
Route (PAR).

Researchers have also proposed implementations of RSA
made to take advantage of the efficiency of multi-core Graph-
ical Processing Units (GPUs) for parallel tasks. Fan et al. [16]
presented an approach to RSA parallelization using JCUDA
[42] and Hadoop [1]. Their method separated the algorithm
into two levels: tread level, which is associated with the
CUDA [2] framework and computer level. The researchers
compared their experimental findings vs. CPU run times across
10 threads, 16 threads, 100 threads, and 500 threads with
different plaintext character lengths. Their results showed
a significant increase in speed up compared to CPU-based
parallel implementations of the RSA algorithm. Fadhil and
Younis [15] also focused their research on comparing GPU-
based and CPU-based parallel RSA implementations. They
were able to obtain a speed up factor of 23 for the GPU-based
implementation vs the multi-thread CPUs speed up factor of 6
when compared against the same serial CPU implementation
of the RSA algorithm.

VI. DISCUSSION

The RSA algorithm is a public key encryption scheme that
ensures better security than symmetric encryption algorithms;
for instance, DES [26]. The algorithm is heavily used in the
industry and adapted for various communication schemes. Due
to its ever lasting popularity, different avenues for improving
the performance of the RSA algorithm through parallelization

have been discussed in this paper. Additionally, one of these
avenues has been analyzed and implemented to illustrate the
improved performance of this approach, strengthening the
quality of the study.

The experiments were run in the High Performance Com-
puting environment of Tennessee Technological University
[5]. The high performance cluster provides all the necessary
functionality to execute parallel programs using the OpenMP
library, which was used to parallelize the RSA algorithm.
Upon analysis, certain operations cannot be parallized in the
RSA algorithm due to the dependency of one operation on
another. The steps depicted in the Algorithm 1 are dependent
upon previous actions in the sequence. However, the output
values of the algorithm for a given input stream do not need
to be recomputed. Thus, this gives us a portion of the program
which will always remain sequential.

One of the limitations of this parallelized approach is that
the program does not address parallelizing and / or optimizing
the modular operations in Equation 1 and Equation 2. It is
analyzed, this operation is also time intensive and worth imple-
menting for parallel processing. One method to minimize this
computational complexity would be incorporating the Chinese
Remainder Theorem (CRT) [14]. Another limitation of the
approach is that the study does not consider the underlying
protocol of the RSA algorithm on which the keys will be
shared. These limitations deviate the study from a real-life
scenario of RSA encryption. However, the limitations do not
affect the parallel performance and model of this encryption
scheme which is the essence of this study.

VII. CONCLUSION

In our study, we present a comprehensive literature survey of
parallelization of the RSA algorithm, a public key encryption
scheme, from 1978 till date. The survey represents several
avenues on which the algorithm could be parallelized as well
as techniques or methods that allow sequential processes to
run simultaneously on different processing elements, be it on
Central Processing Unit (CPU) and / or Graphics Processing
Unit (GPU). The survey should give researchers a foundation
to understand the types of research available in this field of
study and help develop strategies to further improve on paral-
lelization of the RSA algorithm. Additionally, our research
presents a parallel implementation of the RSA algorithm
focused on one of the possible discussed avenues, which is
the exponentiation operations. We analyze the exponentiation
operations by partitioning them into individual processing
elements in order to compute the encryption and decryption
mathematical operations faster. This gives us improved perfor-
mance in terms of execution time of the program compared
with the serial implementation leading to high speed up and
efficiency. The detailed comparisons and experimental findings
are described in the Results section.

Our research also includes some limitations that are men-
tioned in the Discussion section which could be considered as
possible future work. For example, our work could possibly

be improved through analysis and evaluation of an imple-
mentation utilizing another high performance message passing
computing library, such as, Message Passing Interface (MPI)
[17]. Additionally, our focus was on developing CPU-based
parallel processing tool. Focusing on GPU-based implementa-
tion, however, would be an another avenue for future work.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments and feedback. We would also like to extend
our gratitude to Dr. Ambareen Siraj and Dr. Sheikh K. Ghafoor
for the guidance and direction we have received throughout
the research. The work reported in this paper has been fully
supported by Cybersecurity Education, Research & Outreach
Center (CEROC) at Tennessee Technological University.

REFERENCES

[1] Apache hadoop — open-source software for reliable, scalable, dis-
tributed computing. https://hadoop.apache.org/. Accessed: April 8, 2019.

[2] Cuda by nvidia. https://developer.nvidia.com/cuda-zone. Accessed:
April 5, 2019.

[3] The gnu multiple precision arithmetic library. https://gmplib.org. Ac-
cessed: April 6, 2019.

[4] Openmp — enabling hpc since 1997. https://www.openmp.org/. Ac-
cessed: April 5, 2019.

[5] Tennessee tech university’s impulse high performance computing cluster.
https://www.hpc.tntech.edu. Accessed: October 22, 2019.

[6] J-C Bajard and Laurent Imbert. A full rns implementation of rsa. IEEE
Transactions on Computers, 53(6):769–774, 2004.

[7] Wńodzimierz Bielecki and Dariusz Burak. Parallelization method of
encryption algorithms. In Advances in Information Processing and
Protection, pages 191–204. Springer, 2007.

[8] Thomas Blum and Christof Paar. High-radix montgomery modular
exponentiation on reconfigurable hardware. IEEE transactions on
computers, 50(7):759–764, 2001.

[9] Dan Boneh and Hovav Shacham. Fast variants of rsa. CryptoBytes,
5(1):1–9, 2002.

[10] Ernest F Brickell. A survey of hardware implementations of rsa. In
Conference on the Theory and Application of Cryptology, pages 368–
370. Springer, 1989.

[11] Che Wun Chiou. Parallel implementation of the rsa public-key cryp-
tosystem. International Journal of Computer Mathematics, 48(3-4):153–
155, 1993.

[12] Thomas Collins, Dale Hopkins, Susan Langford, and Michael Sabin.
Public key cryptographic apparatus and method, December 8 1998. US
Patent 5,848,159.

[13] Masumeh Damrudi and Norafida Ithnin. Parallel rsa encryption based
on tree architecture. Journal of the Chinese Institute of Engineers,
36(5):658–666, 2013.

[14] Pei Dingyi, Salomaa Arto, and Ding Cunsheng. Chinese remainder
theorem: applications in computing, coding, cryptography. World
Scientific, 1996.

[15] Heba Mohammed Fadhil and Mohammed Issam Younis. Parallelizing rsa
algorithm on multicore cpu and gpu. International Journal of Computer
Applications, 87(6), 2014.

[16] Wenjun Fan, Xudong Chen, and Xuefeng Li. Parallelization of rsa
algorithm based on compute unified device architecture. In 2010 Ninth
International Conference on Grid and Cloud Computing, pages 174–
178. IEEE, 2010.

[17] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A
high-performance, portable implementation of the mpi message passing
interface standard. Parallel computing, 22(6):789–828, 1996.

[18] Shay Gueron and Or Zuk. Applications of the montgomery exponent.
In International Conference on Information Technology: Coding and
Computing (ITCC’05)-Volume II, volume 1, pages 620–625. IEEE, 2005.

[19] Dan Hu. Using rsa and aes for file encryption. https://www.codeproject.
com/Tips/834977/Using-RSA-and-AES-for-File-Encryption,
note=(Accessed on April 27, 2019), 2014.

[20] Shinichi Kawamura, Masanobu Koike, Fumihiko Sano, and Atsushi
Shimbo. Cox-rower architecture for fast parallel montgomery multi-
plication. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 523–538. Springer, 2000.

[21] Sharon S Keller. The 186-4 rsa validation system (rsa2vs).
[22] Donald Ervin Knuth. The art of computer programming: sorting and

searching, volume 3. Pearson Education, 1997.
[23] Cetin Kaya Koc. High-speed rsa implementation version 2.0. RSA

Security, 1994.
[24] Yunfei Li, Qing Liu, and Tong Li. Design and implementation of an

improved rsa algorithm. In 2010 International Conference on E-Health
Networking Digital Ecosystems and Technologies (EDT), volume 1,
pages 390–393. IEEE, 2010.

[25] Qiang Liu, Fangzhen Ma, Dong Tong, and Xu Cheng. A regular parallel
rsa processor. In The 2004 47th Midwest Symposium on Circuits and
Systems, 2004. MWSCAS’04., volume 3, pages iii–467. IEEE, 2004.

[26] Prerna Mahajan and Abhishek Sachdeva. A study of encryption
algorithms aes, des and rsa for security. Global Journal of Computer
Science and Technology, 2013.

[27] Tsutomu Matsumoto, Koki Kato, and Hideki Imai. Speeding up secret
computations with insecure auxiliary devices. In Conference on the
Theory and Application of Cryptography, pages 497–506. Springer,
1988.

[28] Bishop Matt et al. Introduction to computer security. Pearson Education
India, 2006.

[29] Ivan Niven, Herbert S Zuckerman, and Hugh L Montgomery. An
introduction to the theory of numbers. John Wiley & Sons, 2013.

[30] David Pearson. A parallel implementation of rsa. Cornell University
(July 1996), 1996.

[31] Karl C Posch and Reinhard Posch. Modulo reduction in residue number
systems. IEEE Transactions on Parallel and Distributed Systems,
6(5):449–454, 1995.

[32] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communica-
tions of the ACM, 21(2):120–126, 1978.

[33] Yasuyuki Sakai and Kouichi Sakurai. Simple power analysis on fast
modular reduction with generalized mersenne prime for elliptic curve
cryptosystems. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 89(1):231–237, 2006.

[34] Erkay Savas, Alexandre F Tenca, Çetin Kaya Koç, et al. A scalable and
unified multiplier architecture for finite fields gf (p) and gf (2ˆ m). In
CHES, pages 277–292, 2000.

[35] Katja Schmidt-Samoa, Olivier Semay, and Tsuyoshi Takagi. Analysis
of fractional window recoding methods and their application to elliptic
curve cryptosystems. IEEE Transactions on Computers, 55(1):48–57,
2006.

[36] S Sepahvandi, M Hosseinzadeh, K Navi, and A Jalali. An improved
exponentiation algorithm for rsa cryptosystem. In 2009 International
Conference on Research Challenges in Computer Science, pages 128–
132. IEEE, 2009.

[37] Mark Shand and Jean Vuillemin. Fast implementations of rsa cryptogra-
phy. In Proceedings of IEEE 11th Symposium on Computer Arithmetic,
pages 252–259. IEEE, 1993.

[38] Ajay C Shantilal. A faster hardware implementation of rsa algorithm.
Oregon State University, Corvallis, Oregon, 97331, 1993.

[39] Nigel Paul Smart et al. Cryptography: an introduction, volume 3.
McGraw-Hill New York, 2003.

[40] SH Tang, KS Tsui, and Philip Heng Wai Leong. Modular exponentiation
using parallel multipliers. In Proceedings. 2003 IEEE International
Conference on Field-Programmable Technology (FPT)(IEEE Cat. No.
03EX798), pages 52–59. IEEE, 2003.

[41] Robert A Van De Geijn and Jerrell Watts. Summa: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and Experience,
9(4):255–274, 1997.

[42] Yonghong Yan, Max Grossman, and Vivek Sarkar. Jcuda: A
programmer-friendly interface for accelerating java programs with
cuda. In European Conference on Parallel Processing, pages 887–899.
Springer, 2009.

[43] Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-Jae Moon. Rsa
speedup with chinese remainder theorem immune against hardware fault
cryptanalysis. IEEE Transactions on computers, 52(4):461–472, 2003.

