
Static-RWArmor: A Static Analysis Approach for
Prevention of Cryptographic Windows Ransomware

Md. Ahsan Ayub∗, Ambareen Siraj∗, Bobby Filar†, and Maanak Gupta∗
∗Department of Computer Science, Tennessee Tech University, Cookeville, USA

†Sublime Security, Inc., Washington, District of Columbia, USA
Emails: mayub42@tntech.edu, asiraj@tntech.edu, bobby@sublimesecurity.com, and mgupta@tntech.edu

Abstract—The everlasting fight between security researchers
and ransomware authors, including cyber criminals who leverage
ransomware to cripple organizations worldwide, has continued
to evolve as novel techniques are used to evade ransomware
detection. The victim not only endures paramount financial loss
from business downtime for several days and/or paying ransom
to regain control of their environment but also becomes at risk
of being exposed to the stolen digital assets out on the Inter-
net. To tackle these threats against ransomware, our research
project aims to identify (1) structural similarities among 2,436
cryptographic Windows ransomware samples per calendar year
between 2017 and 2021 and (2) structural dissimilarities against
3,014 benign applications using machine learning classifiers. We
base our analysis on PE metadata for similarity analysis and
binary classification tasks. With the Cosine Index, we capture
71% – 87.80% and 66% – 82.30% of similarities based on
imports and function names feature spaces, respectively. On the
other hand, after designing four experimental settings, Random
Forest outperforms other applied classifiers by achieving 91.75%,
91.99%, 90.47%, and 91.05% at best for accuracy, precision,
recall, and F1 scores, respectively, for ransomware detection.

Index Terms—Machine Learning, Ransomware, Similarity
Analysis, Static Analysis

I. INTRODUCTION

Ransomware is a special type of malicious software that
encrypts or locks critical infrastructure or victim machines, in
general, to demand a hefty ransom from them in exchange
for giving back control of the environment. That said, we
can group ransomware into two categories: “cryptographic”
ransomware, encrypting important and sensitive digital assets,
and “locker” ransomware, blocking user access from their de-
vice. In this study, our focus is on cryptographic ransomware,
a.k.a. crypto-ransomware, that attacks especially Microsoft’s
Windows operating system and uses strong cryptographic
libraries for file encryption. It is reported that cryptographic
ransomware attacks are carried out more frequently than locker
ransomware attacks [13], [46].

Although ransomware is not a novel malicious actor, it
has been on the news as headlines since 2016 for the
massive financial damages it causes for both organizations
and individuals [42]. The magnitude of ransomware attacks
has significantly grown over the years due to geopolitical
unrest and the rise of ransomware activist groups globally.
For example, the DarkSide ransomware attack on the colonial
pipeline network (a critical infrastructure system), a company
that supplies about half of the U.S. East Coast’s gasoline, took

place in May 2021. The company has a 5,500-mile pipeline
system with a capacity of carrying 2.5 million barrels of
fuel per day. Because of this ransomware-as-a-service (RaaS)
affiliate program’s attack, the Federal Motor Carrier Safety
Administration (FMCSA) announced a state of emergency in
18 U.S. States to tackle the significant fuel shortages. After five
days of investigations on this largest-ever cyber-attack on an
American energy system, the company resumed its operation
by paying US$ 4.4 million worth of bitcoin [7].

Due to the gruesome political agenda and/or financial gain,
small to large organizations are being targeted worldwide,
especially in the USA, and adversaries use innovative ways to
deploy malicious software. For example, the SophosLabs team
reported in the “Sophos 2023 Threat Report” that the Darkside
ransomware abused a clean antivirus utility program while
it was a Google Updater application for Exx ransomware.
Additionally, it is shared that ransomware authors are adapting
new programming languages (e.g., Rust, GoLang, etc.) to build
ransomware to make it easier to compile and run in the victim
machine while developing its capability of executing cross-
platform [55]. For the severity of this frightful situation and
to combat such threat actors, our goal in this paper is to
investigate the prospect of detecting ransomware in terms of
preventive measurements. In other words, we aim to examine
the structural similarities among ransomware and dissimilari-
ties between ransomware and benign applications so that we
can prevent a ransomware attack before it even happens. It is
a static analysis-based approach to detect ransomware: we call
it “Static-RWArmor.”

As an extension of [7] (our prior work), we ask the
following research questions (RQ) in this paper:

RQ1. Do ransomware samples caught in the wild in a
calendar year share similar structural information?

RQ2. Can we discover PE file metadata-based dissimilarities
between ransomware samples and benign applications?

Our proposed answers to the aforementioned research ques-
tions will lead to identifying an unknown or new ransomware
sample without running it in a safe environment. We hope our
work will help security researchers locate ransomware at the
beginning of their life cycle on a victim’s Windows machine
before the irreversible encryption process begins. Aligned with
the research questions mentioned above, we list the main
contributions of our paper as follows:

• We investigate how similar ransomware samples collected

1681

2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

2324-9013/23/$31.00 ©2023 IEEE
DOI 10.1109/TrustCom60117.2023.00228

in the same calendar year are based on the Cosine Index
from 2017 to 2021.

• We build machine learning classifiers to effectively iden-
tify the structural dissimilarities between 2,436 ran-
somware samples and 3,014 benign applications.

Paper Organization. The rest of the paper is organized as
follows: Section II describes the background. We discuss the
related academic work in Section III. The methodology, in-
cluding the dataset by which the experiments were conducted,
and the empirical results are presented in Sections IV and
V, respectively. We list the limitations of our study, as well
as future work, in Section VI. Finally, the conclusion of this
work is shared in Section VII.

II. BACKGROUND

This section describes a few terminologies to understand
our work better.

A. Portable Executable (PE) File

In Microsoft’s Windows Operating System, a portable ex-
ecutable (PE) file is an object file that contains .exe (exe-
cutable), .dll (dynamic link library), and .sys (system file)
as extensions. It consists of several pieces of information in
categories [60]. The highlight of some of them is as follows:

• File Header. It is the first container of a PE file. It contains
several pieces of important information, such as the type
of target machine, the number of PE sections, the date
time stamp of the file’s creation, an unsigned integer
to identify the state of the file (e.g., 0x10B is for an
executable file), the size of the code section, the address
of entry point, the size of the initialized and uninitialized
data section, the subsystem value to indicate the Windows
subsystem is needed, etc.

• Section Table. A section table entry consists of “name”
(which is 8-byte long), “virtual size” (a value indicating
the section’s size when loaded into memory), “virtual
address” (an address value of the section’s first byte
when loaded into memory), “size of row data” (a value
indicating the size of initialized data on disk), etc. The
most common section names include but are not limited
to “text” - the executable code of the program; “data” -
the initialized data; “bss” - the uninitialized data; “rdata”
- read-only initialized data, “edata” - the export tables;
“idata” - the import tables, and ”reloc” - relocation
information.

• Import Address Table. It provides two important pieces
of information: “import libraries” that the PE file will
be using in terms of “dll”, and for each import li-
brary, it also lists the “function names.” For exam-
ple, “47363b94cee907e2b8926c1be61150c7” is a ran-
somware sample from the Cryptowall family. It is bound
to dbghelp.dll, KERNEL32.dll, COMDLG32.dll, AD-
VAPI32.dll, USER32.dll, and COMCTL32.dll import
libraries. Additionally, we can also extract the “Ap-
pendMenuA”, “CallWindowProcA”, “CharLowerBuffA”,

“CharUpperA”, etc. functions that are required from the
“USER32.dll” import library.

• Export Address Table. It contains the public names of
functions and values that other PE files can import.

• Resources Directory Table. The structure of the resource
is tree-like. It informs us of its type, e.g., manifest, icon,
etc. The vital information we gather from this table is
the language used. For example, we can extract such in-
formation during the inspection of a “Petya” ransomware
family’s sample and check whether it has any Russian
language presence.

B. Static Analysis

Static analysis is an important technique that enables se-
curity researchers to investigate ransomware, or malware in
general, without execution. To understand the capabilities of
a target file, we extract its structural information for analysis.
For example, examining PE metadata as features of all the col-
lected ransomware samples is crucial for malware researchers
to know how it was written by malware author(s). Performing
static analysis of a PE file does not require kernel-level
privilege or a virtual machine as opposed to dynamic analysis
[17]. Additionally, we take note that ransomware authors
write their samples in a way that checks the environment;
for example, it is common to notice that a piece of malware
will not be executing itself if it senses being run in a virtual
environment [23], [39], [50]. Therefore, we are motivated to
carry out static analysis tasks.

C. Binary Classification

In the field of Machine Learning, binary classification
involves learning from instances of two distinct classes and
then, given an instance, predicting the class it belongs to.
With this learning approach, we attempt to distinguish two
different entities. For example, the algorithms equipped to
execute binary classification tasks help us identify a spam
email [32], a specific disease of a patient [15], a malicious
software [19], etc. We discuss the following algorithms to
understand their details better as we have used them in our
research project.

1) Support Vector Classification: Support Vector Machine
(SVM), a memory-efficient algorithm, can be used for classifi-
cation, regression, and outlier detection. It is effective when the
number of instances is less than the number of features [45].
The algorithm can be configured with several kernel functions
for the decision process, such as Linear, Polynomial, Radial
Basis Function (RBF), and Sigmoid [1]. Our experiments
find satisfactory results for “RBF” and “Polynomial” decision
functions.

2) Decision Tree: Decision tree, a robust algorithm, is
heavily used for classification and regression [8], [61]. It
scans the data features to formulate decision rules to pre-
dict the class by incorporating Iterative Dichotomies 3 (ID3)
algorithm, Successor of ID3 (C4.5) algorithm, Classification
and Regression Tree (CART) algorithm, etc [10]. We used
an optimized version of the CART algorithm implemented

1682

in the scikit-learn software [44]. Additionally, we select the
Information Gain metric for tree segmentation [11].

3) Random Forest: A random forest classifier, an ensemble
learning method, is a meta estimator that combines a forest of
randomized decision tree estimators to improve the robustness
[9]. It is tailored to apply Decision Tree algorithms on the
subset of the dataset to increase the decision-making accu-
racy while avoiding overfitting. Similar to the decision tree
algorithm, we can configure the classifier based on the Gini
Impurity or Information Gain [24]. In our case, we choose the
Gini method to evaluate the tree segmentation’s quality.

4) AdaBoost and Gradient Boosting: Similar to the Ran-
dom Forest classifier, we employ AdaBoost and Gradient
Boosting classifiers, also examples of ensemble learning meth-
ods. AdaBoost, a powerful boosting algorithm, operates on a
weighted voting mechanism of a sequence of weak learners
for the prediction purpose [20]. It is used for classification
and regression tasks [16], [27]. Gradient Boosting classifier
operates on gradient-boosted decision tree algorithms, which
offer a generalization of boosting to differentiable loss func-
tions [21], [22]. We select the learning rate of the classifier as
1 to shrink the contribution of each tree.

III. RELATED WORK

This section discusses the work reported by other re-
searchers in this field.

A. State-of-the-Art Research Work

Static analysis is widely used to detect malicious software
[36], [52]. Additionally, using off-the-shelf machine learn-
ing techniques led to exceptional success for academic and
industry-based security researchers [5], [6], [28]–[30], [33],
[35], [38], [41]. Investigation of static features to detect
ransomware has been well studied for both mobile devices
[4], [12], [14], [18], [31], [34], [56] (especially for Android
OS) and Windows-based platforms [43], [51], [63], [64].

Similar to our work, which is focused on cryptographic
ransomware built to target the Windows Operating System
environment, all the cited research projects achieved satisfac-
tory results from their approach to analyzing static features
of ransomware. We note that the metadata of ransomware
samples’ PE file structure is a popular mechanism for propos-
ing innovative detection schemes. We observe that security
researchers utilized the information of the import address table
to execute the statistical analysis tasks based on the frequency
of appeared items [26], [57]. The detection techniques include
Association Rule [49], and Cosine Similarity on DLLs used
[47]. Additionally, we have noticed that a few researchers
focused on a set of selective imports in their study, e.g.,
interesting DLLs/function calls [48], encryption-based calls
[63], etc. Furthermore, the Strings metadata has been sim-
ilarly used to devise impactful schemes. For example, the
researchers explored the presence of interesting strings in the
ransomware samples, such as ransom, encrypt, bitcoin, crypto,
IP addresses, etc. [43], [54].

B. Distinction from Existing Related Work

We present Table I to showcase each research paper’s
necessary details. While we focus on PE metadata feature
space for this work, a few chose OpCode and Hexcode-based
structural information to equip their machine learning models
for training and testing purposes. The reason why three papers
(e.g., [26], [49], and [54]) are listed which collected dynamic
analysis feature sets in their study, hence hybrid analysis, is
because they reported the performance of machine learning
classifiers for the extracted static features. Although we do
not construct a deep learning network to learn the underlying
patterns between ransomware and benign application, unlike
[63], we notice that random forest and ensemble learning
methods, generally, were applied in other mentioned work like
ours. That said, we reduced the dimension of our feature space
with Principal Component Analysis (PCA), whereas others did
not mention using such a technique in their work. On the
other hand, Yara is a pattern-matching tool developed and
maintained by VirusTotal and is heavily used by malware
researchers [62]. In our previous work [7], we created a couple
of Yara-based scripts to identify whether or not a ransomware
sample is packed and/or uses crypto libraries. As an extension,
in this paper, we contribute by proposing a ransomware detec-
tion technique through Static Analysis based on PE metadata.
Notably, we evaluate the built machine learning classifiers’
performance with many more ransomware variants than others.
Additionally, we identify similarities among ransomware (our
prior work) and explore how many similarities we can capture
from the ransomware samples collected in a calendar year (our
current work). This task aims to investigate the similarities of
a novel ransomware variant from other reported samples to
understand its capabilities.

IV. METHODOLOGY

This section provides a detailed description of our experi-
mental methodology to address the research questions.

A. Dataset Construction

The initial phase of our experiments was to construct the
dataset, including both ransomware and benign applications.
In [7], we collected 727 active ransomware samples. Including
them, we gather additional ransomware PE data from Sophos-
ReversingLabs 20 Million (SOREL-20M) dataset [25]. The
repository extracted various disarmed malware samples’ fea-
tures and metadata. The types of malware samples include
adware, flooder, ransomware, crypto-miner, file infector, in-
staller, spyware, etc., from which we obtained several packed
ransomware samples collected between 2018 and 2020. With
that, we accumulate 2,436 ransomware samples’ PE metadata
in total. We double-check with VirusTotal by providing the
hashes of each sample to confirm that they are ransomware
samples. To accomplish this task, we write a Python script to
utilize VirusTotal API v3 Engine [59], which lets us scan the
hash of each sample. In return, it sends back a detailed report
of the sample with over 70 antivirus scanners’ evaluation on
whether or not it is labeled as malicious or safe.

1683

TABLE I
CLASSIFICATION OF RANSOMWARE DETECTION APPROACHES ON WINDOWS PLATFORM THROUGH STATIC ANALYSIS

Research Published Hybrid Samples’ Count Features Technique
Paper Year Analysis Ransomware Benign PE Metadata OpCode Hexcode ML DL Yara
Medhat et al. [43] 2018 – 793 878 ✓ – – – – ✓
Zhang et al. [63] 2020 – 1,521 92 – ✓ – – ✓ –
Zhang et al. [64] 2019 – 1,787 100 – ✓ – ✓ – –
Reddy et al. [51] 2021 – 113 162 – – ✓ ✓ – –
Hasan et al. [26] 2017 ✓ 360 460 ✓ – – ✓ – –
Subedi et al. [57] 2018 – 211 239 ✓ – – ✓ – –
Poudyal et al. [49] 2018 – 178 178 ✓ – – ✓ – –
Poudyal et al. [47] 2018 ✓ 550 540 ✓ ✓ – ✓ – –
Poudyal et al. [48] 2019 – 292 292 ✓ ✓ – ✓ – –
Shaukat et al. [54] 2018 ✓ 579 442 ✓ – – ✓ – –
Our Prior Work [7] 2021 – 727 – ✓ – – ✓ – ✓
Our Current Work 2023 – 2,436 3,034 ✓ – – ✓ – –

In addition to collecting the ransomware dataset from the
SOREL-20M repository, we randomly picked benign applica-
tions’ metadata for the binary classification tasks. We include
a list of cloud-based backup and file-compressing software as
such applications interact heavily with the file system. Overall,
we store 3,014 benign applications’ PE metadata. We build a
PE metadata extraction engine to process the dataset using
Python 3 programming language.

Data Storing Method. We group all the pieces of PE metadata
information into the following categories, which can be treated
as a tabular format of a relational database.

• Sample Info: MD5, Sample Size, Collected Year, and Is
Malicious.

• File Generic Info: MD5, SHA1, SHA256, First Seen by
Virus Total, Mime Type, File Type, PE File, and File
Type Extension.

• Library Imports: MD5 and Library Names.
• Function Name Imports: MD5 and Function Names.
• Sections: MD5, Section Name, Raw Size, Virtual Size,

and Entropy.
• PE Info: MD5, Subsystem, Subsystem Version, Machine

Type, Time Stamp, Code Size, Initialized and Uninitial-
ized Data Size, OS Version, Magic, and PE Entry Point.

• VirusTotal Info: MD5, Scan ID, Total Scan Engines, and
Number of Positives.

We hope other field researchers can benefit from our
dataset’s structured formation.

B. Experiment Setup

After constructing a dataset for ransomware samples and
binary applications, we set up the experiments to address the
research questions (as illustrated in fig. 1).

Methodology to Address RQ1: Similarity Analysis. To find
the similarity among the ransomware samples from the same
calendar year, we query our constructed dataset to generate a
count. To further explain, we notice that we have the following
number of ransomware samples per calendar year:

• 2017 (and past) – 14 DLLs and 820 EXEs (total: 834).

SOREL-20M
& VirusTotal
Repository

(PE Metadata)

3,014 Benign
Applications

2,436
Ransomware
Samples

Similarity
Analysis using
Cosine Index

RQ1

RQ2

Binary Classification
using Supervised
ML Classifiers

Do ransomware samples caught in
the wild in a calendar year share
similar structural information?

Can we discover PE file
metadata-based dissimilarities

between ransomware samples and
benign applications?

Fig. 1. Experimental methodology of detecting cryptographic ransomware
through static analysis and identifying similarities among them.

• 2018 – 114 DLLs and 592 EXEs (total: 606).
• 2019 – 26 DLLs and 404 EXEs (total: 430).
• 2020 – 90 DLLs and 352 EXEs (total: 442).
• 2021 – 3 DLLs and 21 EXEs (total: 24).
With ransomware distribution between 2017 and 2021, we

explore the feature sets and perform a frequency-based empir-
ical case study. We highlight the following characteristics:

• The sample size has increased over the years. For exam-
ple, the median value was 208.9 KB in 2017, but it has
climbed up to 3764.224 KB because of presumably using
RaaS (Ransomware-as-a-Service) kit.

• The uninitialized code size has been mostly 0 throughout
the years.

• The maximum number of unique libraries used has de-
creased. Due to the use of packing libraries, the maximum
number was 22 in 2017; however, it went down each year.
In 2021, the number became 8.

• The maximum number of unique functions used has
decreased. Again, because of being packed, it was 787

1684

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
PCA-1

1.0

0.5

0.0

0.5

1.0

1.5

PC
A-

2

PCA w/ Imports
Benign
Ransomware

5 0 5 10 15 20
PCA-1

6

4

2

0

2

4

6

8

10

PC
A-

2

PCA w/ Function Names
Benign
Ransomware

5 0 5 10 15 20
PCA-1

6

4

2

0

2

4

6

8

PC
A-

2

PCA w/ Function Names and Imports
Benign
Ransomware

Fig. 2. Visualization of different feature spaces after applying Principal Component Analysis (PCA).

in 2017 but dropped to 165 in 2021.
• Although the median value is 80.28% for successful

malware detection by VirusTotal, the minimum value over
five years is alarming (28.79%).

• Ransomware samples tend to include a significantly fewer
number of exports.

In [7], we obtained suspicious indicators from the “Imports”
and “Function Names” feature spaces. Thus, we selected them
to examine the similarity of all the ransomware samples
yearly. To achieve this task, we choose the Cosine Index to
generate the similarity index. Given x and y as row vectors,
it computes their L2 normalized dot product based on the
following equation [53].

Cosine Index =
xyT

||x||||y||

This mechanism is a popular choice when comparing the
similarity between documents [37], [58]. In our case, we have
a list of items (e.g., import names and function names) for each
ransomware sample, and then, based on that, we compute its
cosine similarity with all other samples found in the same year.

Methodology to Address RQ2: Binary Classification. We per-
form binary classification tasks to discover the structural
dissimilarities between ransomware and benign applications.
As we explore similarities among ransomware samples based
on imports and function names, we carry forward the same
feature spaces to investigate if supervised machine learning
algorithms can learn the underlying pattern. We select Support
Vector, Decision Tree, Random Forest, AdaBoost, and Gradi-
ent Boosting classifiers to achieve this task. We administer
four different experimental settings to evaluate the mentioned
algorithms. We describe them as follows:

• Imports. We select the “imports” feature space for our
first experiment setting. We obtain 2,576 unique numbers
of imports for all the ransomware samples and benign
applications. Then, we create a sparse matrix of 5,450
rows (ransomware and benign applications) and 2,577

columns (imports and target class). We apply Principal
Component Analysis (PCA) [2] to reduce the size of
columns into two by capturing 23% of information.

• Function Names. Similar to the first experimental setting,
we choose the “function names” feature space for our
second one. For this case, we gather 105,546 unique
numbers of function names. Similarly, after creating the
sparse matrix, we utilize PCA while capturing 13% of
information of the entire matrix dataset.

• Imports and Function Names Combined. We combine
both “import” and “function names” feature spaces for
our third experimental setting. The size of the sparse
matrix becomes 5,450 rows and 108,123 columns. Then,
applying PCA similarly gives us 13% of information
capture.

• Numeric Feature Set. The last experiment focuses on
the numeric feature set that helps us detect ransomware.
For every ransomware sample and benign application,
we compute “imports’ count”, “function names’ count”,
“section names’ count”, “sample size”, “Code Size”,
“Initialized Data Size”, “Uninitialized Data Size”, and
“Resource Languages w/ PCA”. We have not applied
PCA after processing the dataset.

We utilize Scikit Learn [44], a machine learning package,
to apply Principal Component Analysis (PCA) on the high
dimensional feature space of the processed dataset. Now, we
present fig. 2 to show the distribution of ransomware samples
and benign applications’ feature spaces for experiments 1,
2, and 3. The visualization motivates us to select tree-based
supervised learning algorithms because linearly separating two
classes’ data points does not appear feasible.

V. EMPIRICAL FINDINGS

This section reports the findings from all the experiments.

A. Answer to RQ1: Do ransomware samples caught in the
wild in a calendar year share similar structural information?

As mentioned in the previous section, we utilize the “Cosine
Index” to examine the similarity among the ransomware

1685

TABLE II
PERFORMANCE OF A SUITE OF MACHINE LEARNING ALGORITHMS FOR BINARY CLASSIFICATION TASK ON DIFFERENT EXPERIMENTAL SETTINGS

Imports (Experiment 1) Function Names (Experiment 2) Imports & Function Names (Experiment 3) Numeric Features (Experiment 4)
Model Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
SVC (rbf) 0.6917 0.6953 0.7009 0.6902 0.7022 0.7372 0.6556 0.6509 0.7063 0.7346 0.662 0.6596 0.6207 0.3104 0.5 0.383
SVC (poly) 0.6416 0.7112 0.6813 0.6369 0.5861 0.293 0.5 0.3695 0.6323 0.7703 0.5574 0.4877 0.6207 0.3104 0.5 0.383
Decision Tree 0.8179 0.8136 0.8171 0.8136 0.8712 0.8682 0.8669 0.8669 0.8667 0.8631 0.8632 0.8625 0.8911 0.8846 0.8845 0.8839
Random Forest 0.8286 0.824 0.8261 0.824 0.8839 0.8825 0.8781 0.8795 0.8839 0.8828 0.8777 0.8793 0.9175 0.9199 0.9047 0.9105
AdaBoost 0.7721 0.7662 0.7608 0.7628 0.8337 0.8343 0.8215 0.8249 0.8281 0.8333 0.8111 0.8165 0.8601 0.8561 0.8457 0.8489
Gradient Boosting 0.8179 0.8125 0.8151 0.8132 0.8622 0.8595 0.856 0.8571 0.8644 0.862 0.858 0.8592 0.9132 0.9107 0.9049 0.9069

samples collected yearly from 2017 to 2021. We compute the
cosine index similarity, using Scikit Learn [44], of particular
ransomware sample against all the samples caught in the same
year. Then, we take the median value of the cosine index for
that sample. For example, we possess 24 ransomware samples
for 2021. We compare the similarity of each sample against
the rest of the 23 samples. With this, we generate an array of
cosine index values for each sample and evaluate its median
result. This way, we compute all the samples’ cosine index
values yearly. Lastly, we calculate four statistical metrics from
the list of samples’ cosine values: minimum, median, mean,
and maximum. We report the findings in Table III for two
feature spaces: Imports and Function Names.

TABLE III
COSINE INDEX SIMILARITY OF RANSOMWARE SAMPLES PER CALENDAR

YEAR BASED ON IMPORTS AND FUNCTION NAMES

Imports Function Names
Year min median mean max min median mean max
2017 0.095 0.71 0.595 1.0 0.014 0.66 0.55 1.0
2018 0.12 0.76 0.63 1.0 0.019 0.75 0.59 1.0
2019 0.295 0.47 0.55 1.0 0.068 0.35 0.48 1.0
2020 0.34 0.77 0.73 1.0 0.34 0.823 0.77 1.0
2021 0.267 0.878 0.795 1.0 0.08 0.8 0.73 1.0

Apart from the samples collected in 2019, we observe
that the cosine index similarity of ransomware samples per
calendar year based on the median metric is between 71% and
87.80% for the imports feature space while 66% and 82.30%
for the function names feature space. The median value for
2019 is below 50% for both feature spaces, indicating weak
similarity among the samples we gathered in our study for the
year mentioned.

B. Answer to RQ2: Can we discover PE file metadata-based
dissimilarities between ransomware samples and benign ap-
plications?

As mentioned in the previous section, we design four
experimental settings based on the selected feature spaces
to discover the structural dissimilarities between our studied
ransomware samples and benign applications. We accomplish
this task by choosing two different kernels of Support Vec-
tor Classifier: RBF and Polynomial, Decision Tree, Random
Forest, AdaBoost, and Gradient Boosting. Scikit Learn [44]
was used to apply and configure the algorithms based on the
parameters discussed in Section 2. The evaluation of classifiers
is performed in terms of:

• Accuracy. This metric describes the correct prediction of
a given classifier.

• Precision. It is the ratio of the true positive records to all
positively labeled instances.

Precision =
True Positive

True Positive + False Positive
• Recall. It is the ratio of the true positive instances to all

instances that should have been labelled positive.

Recall =
True Positive

True Positive + False Negative

• F1 Score. This metric is the harmonic mean of precision
and recall.

F1 Score = 2× Precision × Recall
Precision + Recall

We report the performance of all the classifiers for the
mentioned experiments in a tabular format (see Table II). It
is noted that we perform 5-fold cross-validation for all cases,
and the documented scores for all the metrics are their mean
values. We observe that the Random Forest classifier has
outperformed others for every designed experiment. Among
experiments 1, 2, and 3, Random Forest achieves the best
performance for experiment 3, that is 88.39% of Accuracy,
88.28% of Precision, 87.77% of Recall, and 87.93% of F1
Score. However, we notice that it performs even better for
experiment 4, where accuracy, precision, recall, and F1 scores
are 91.75%, 91.99%, 90.47%, and 91.05%, respectively.

It is important to mention that all the ensemble learning
methods and Decision Tree have produced satisfactory results.
In other words, accuracy, precision, recall, and F1 scores are
in the high 80s for experiment 3 while in the low 90s for
experiment 4.

VI. DISCUSSION AND FUTURE WORK

Our research aims to find the similarities among
the studied samples collected per calendar year. How-
ever, it is noted that multiple samples can be part of
a particular ransomware family. For example, the sam-
ples (MD5 hash) “db349b97c37d22f5ea1d1841e3c89eb4” and
“41b5ba4bf74e65845fa8c9861ca34508” belong to the same
ransomware family, named WannaCry. That said, we will ven-
ture to locate similarities of samples per ransomware family in
a similar mechanism. The inclusion of Strings, OpCode, and
Hexcode feature sets is also left for future work in this space.

It is essential to mention that both malicious and benign
applications are found to be packed in the real world, which
affects extracting the static features of such files [3], [40]. To
address this concern, we include many packed ransomware

1686

samples in our study from the SOREL-20 repository. However,
in future work, we intend to evaluate the efficiency of the
applied machine learning classifiers only with the packed and
encrypted ransomware samples. As the learning capabilities
of deep learning networks are exceptional, constructing such
a network will achieve better performance. We leave exploring
this task as our future work.

However, we encourage organizations to use the 3-2-1 rule
to stay safe regardless of the detection schemes they install in
their environment. The rule involves keeping three backups
of their data: 2 on different storage types and one offsite.
Additionally, organizations can leverage cyber insurance to
salvage the financial loss incurred by a ransomware attack. To
contribute to the cyber defense community, we have published
our implementation, along with the generated feature sets, on
GitHub1 under the MIT license.

VII. CONCLUSION

This static analysis approach, named “Static-RWArmor,”
is focused on detecting cryptographic Windows ransomware
and is proposed based on machine learning. Additionally,
we document the structural similarities observed among the
ransomware samples collected between 2017 and 2021. In
total, we obtain PE metadata from 2,436 ransomware samples
(on which 247 DLLs and 2,189 EXEs) from SOREL-20M,
VirusTotal, and [7]. We choose the cosine index to identify
similarities in the Imports and Function Names feature space.
We find 2021 ransomware samples to be 87.8% (median)
similar for the Import feature space while 82.3% (median)
similar for the Function Names feature space in 2020. In
addition to reporting the Cosine Index’s performance, we
conduct a case study on all the ransomware samples to explore
their characteristics (highlighted in Section IV(B)).

We employ several powerful machine learning algorithms
to distinguish all the collected ransomware and 3,014 benign
applications based on the PE metadata. The built classifiers,
including Support Vector, Decision Tree, Random Forest,
AdaBoost, and Gradient Boosting, achieve satisfactory results
for all the designed experimental settings. We notice that Ran-
dom Forest outperforms the other classifiers; however, other
ensemble methods’ performance, along with Decision Tree,
is quite close. Nevertheless, regarding accuracy, precision,
recall, and F1 scores, the Random Forest classifier is notably
shown to reach the high 80s for Import and Function Names
combined as feature space while low 90s for the numeric
PE metadata features. Our research work is not free from
limitations. We address them in Section VI and hope to carry
out the listed tasks as future work for further improvements.

ACKNOWLEDGMENT

We thank the anonymous reviewers for reviewing this
manuscript and sharing valuable feedback to improve its
quality further. We extend our gratitude to Dr. Stacy Prowell
from the Oak Ridge National Lab, Tennessee, USA, for his

1https://github.com/AhsanAyub/deep static ransomware analysis

expert opinions at the initial stage of this research project.
Additionally, we thank Mr. Joshua Saxe, currently working
at Meta as a Senior Staff Research Scientist, for the valu-
able insights he shared to address the research questions in
this paper. We are grateful to the Cybersecurity Education,
Research & Outreach Center (CEROC) at Tennessee Tech
University for supporting the research project. This work is
partially supported by the NSF grants 2025682 and 2230609.

REFERENCES

[1] Support vector machines, 2023. URL: https://scikit-learn.org/stable/
modules/svm.html.

[2] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley
interdisciplinary reviews: computational statistics, 2(4):433–459, 2010.

[3] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer,
Stefano Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher
Kruegel. When malware is packin’heat; limits of machine learning
classifiers based on static analysis features. In Network and Distributed
Systems Security (NDSS) Symposium 2020, 2020.

[4] Samah Alsoghyer and Iman Almomani. Ransomware detection system
for android applications. Electronics, 8(8):868, 2019.

[5] Kshitiz Aryal, Maanak Gupta, and Mahmoud Abdelsalam. A sur-
vey on adversarial attacks for malware analysis. arXiv preprint
arXiv:2111.08223, 2022.

[6] Kshitiz Aryal, Maanak Gupta, and Mahmoud Abdelsalam. Analysis of
label-flip poisoning attack on machine learning based malware detector.
In In Proceedings of IEEE Big Data, 2023.

[7] Md Ahsan Ayub and Ambareen Sirai. Similarity analysis of ransomware
based on portable executable (pe) file metadata. In IEEE Symposium
Series on Computational Intelligence, pages 1–6, 2021.

[8] Rodrigo Coelho Barros, Márcio Porto Basgalupp, Andre CPLF De Car-
valho, and Alex A Freitas. A survey of evolutionary algorithms for
decision-tree induction. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(3):291–312, 2011.

[9] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.
[10] Carla E Brodley and Paul E Utgoff. Multivariate decision trees. Machine

learning, 19:45–77, 1995.
[11] Bahzad Charbuty and Adnan Abdulazeez. Classification based on

decision tree algorithm for machine learning. Journal of Applied Science
and Technology Trends, 2(01):20–28, 2021.

[12] Aniello Cimitile et al. Talos: no more ransomware victims with formal
methods. International Journal of Information Security, 17:719–738,
2018.

[13] Lena Y Connolly and David S Wall. The rise of crypto-ransomware
in a changing cybercrime landscape: Taxonomising countermeasures.
Computers & Security, 87:101568, 2019.

[14] Alfredo Cuzzocrea, Fabio Martinelli, and Francesco Mercaldo. A
novel structural-entropy-based classification technique for supporting
android ransomware detection and analysis. In 2018 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–7. IEEE, 2018.

[15] Dhiraj Dahiwade, Gajanan Patle, and Ektaa Meshram. Designing disease
prediction model using machine learning approach. In 2019 3rd Inter-
national Conference on Computing Methodologies and Communication
(ICCMC), pages 1211–1215. IEEE, 2019.

[16] Harris Drucker. Improving regressors using boosting techniques. In
Icml, volume 97, pages 107–115. Citeseer, 1997.

[17] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel.
A survey on automated dynamic malware-analysis techniques and tools.
ACM computing surveys (CSUR), 44(2):1–42, 2008.

[18] Hossam Faris et al. Optimizing extreme learning machines using chains
of salps for efficient android ransomware detection. Applied Sciences,
2020.

[19] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. TriggerScope: Towards
Detecting Logic Bombs in Android Apps. In Proceedings of the IEEE
Symposium on Security and Privacy, San Jose, CA, May 2016.

[20] Yoav Freund and Robert E Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of computer
and system sciences, 55(1):119–139, 1997.

[21] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

1687

[22] Jerome H Friedman. Stochastic gradient boosting. Computational
statistics & data analysis, 38(4):367–378, 2002.

[23] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin.
Compatibility is not transparency: Vmm detection myths and realities.
In HotOS, 2007.

[24] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely random-
ized trees. Machine learning, 63:3–42, 2006.

[25] Richard Harang and Ethan M Rudd. Sorel-20m: A large scale benchmark
dataset for malicious pe detection. arXiv preprint arXiv:2012.07634,
2020.

[26] Md Mahbub Hasan and Md Mahbubur Rahman. Ranshunt: A support
vector machines based ransomware analysis framework with integrated
feature set. In 2017 20th International Conference of Computer and
Information Technology (ICCIT), pages 1–7. IEEE, 2017.

[27] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class
adaboost. Statistics and its Interface, 2(3):349–360, 2009.

[28] Olivier Henchiri and Nathalie Japkowicz. A feature selection and
evaluation scheme for computer virus detection. In Sixth International
Conference on Data Mining (ICDM’06), pages 891–895. IEEE, 2006.

[29] Íñigo Íncer Romeo, Michael Theodorides, Sadia Afroz, and David
Wagner. Adversarially robust malware detection using monotonic
classification. In Proceedings of the Fourth ACM International Workshop
on Security and Privacy Analytics, pages 54–63, 2018.

[30] Grégoire Jacob, Paolo Milani Comparetti, Matthias Neugschwandtner,
Christopher Kruegel, and Giovanni Vigna. A static, packer-agnostic
filter to detect similar malware samples. In Detection of Intrusions and
Malware, and Vulnerability Assessment: 9th International Conference,
DIMVA 2012, Heraklion, Crete, Greece, July 26-27, 2012, Revised
Selected Papers 9, pages 102–122. Springer, 2013.

[31] Meet Kanwal and Sanjeev Thakur. An app based on static analysis for
android ransomware. In 2017 International Conference on Computing,
Communication and Automation (ICCCA), pages 813–818. IEEE, 2017.

[32] Asif Karim, Sami Azam, Bharanidharan Shanmugam, Krishnan Kan-
noorpatti, and Mamoun Alazab. A comprehensive survey for intelligent
spam email detection. IEEE Access, 7:168261–168295, 2019.

[33] Md Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi
Parida. Malware phylogeny generation using permutations of code.
Journal in Computer Virology, 1(1-2):13–23, 2005.

[34] Alireza Karimi and Mohammad Hosein Moattar. Android ransomware
detection using reduced opcode sequence and image similarity. In IEEE
Conference on Computer and Knowledge Engineering, 2017.

[35] Jeffrey C Kimmell, Mahmoud Abdelsalam, and Maanak Gupta. Analyz-
ing machine learning approaches for online malware detection in cloud.
In IEEE conference on smart computing (SMARTCOMP) 2021, 2021.

[36] Dhilung Kirat, Lakshmanan Nataraj, Giovanni Vigna, and BS Manju-
nath. Sigmal: A static signal processing based malware triage. In Annual
Computer Security Applications Conference, 2013.

[37] Alfirna Rizqi Lahitani, Adhistya Erna Permanasari, and Noor Akhmad
Setiawan. Cosine similarity to determine similarity measure: Study case
in online essay assessment. In 2016 4th International Conference on
Cyber and IT Service Management, pages 1–6. IEEE, 2016.

[38] Bo Li, Kevin Roundy, Chris Gates, and Yevgeniy Vorobeychik. Large-
scale identification of malicious singleton files. In Proceedings of
the seventh ACM on conference on data and application security and
privacy, pages 227–238, 2017.

[39] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti.
Detecting environment-sensitive malware. In Recent Advances in Intru-
sion Detection: 14th International Symposium. Springer, 2011.

[40] Robert Lyda and James Hamrock. Using entropy analysis to find
encrypted and packed malware. IEEE Security & Privacy, 2007.

[41] Mohammad M Masud, Latifur Khan, and Bhavani Thuraisingham. A
scalable multi-level feature extraction technique to detect malicious
executables. Information Systems Frontiers, 10:33–45, 2008.

[42] Timothy McIntosh, ASM Kayes, Yi-Ping Phoebe Chen, Alex Ng, and
Paul Watters. Ransomware mitigation in the modern era: A comprehen-
sive review, research challenges, and future directions. ACM Computing
Surveys (CSUR), 54(9):1–36, 2021.

[43] May Medhat, Samir Gaber, and Nashwa Abdelbaki. A new static-
based framework for ransomware detection. In IEEE 16th Intl Conf on
Dependable, Autonomic and Secure Computing, pages 710–715, 2018.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[45] John Platt et al. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. Advances in large
margin classifiers, 10(3):61–74, 1999.

[46] Jamie Pont, Osama Abu Oun, Calvin Brierley, Budi Arief, and Julio
Hernandez-Castro. A roadmap for improving the impact of anti-
ransomware research. In Secure IT Systems: 24th Nordic Conference,
NordSec 2019, Aalborg, Denmark, November 18–20, 2019, Proceedings,
pages 137–154. Springer, 2019.

[47] Subash Poudyal and Dipankar Dasgupta. Ai-powered ransomware
detection framework. In IEEE Symposium Series on Computational
Intelligence, 2020.

[48] Subash Poudyal, Dipankar Dasgupta, Zahid Akhtar, and K Gupta. A
multi-level ransomware detection framework using natural language
processing and machine learning. In International Conference on
Malicious and Unwanted Software” MALCON, 2019.

[49] Subash Poudyal, Kul Prasad Subedi, and Dipankar Dasgupta. A
framework for analyzing ransomware using machine learning. In IEEE
Symposium Series on Computational Intelligence, 2018.

[50] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting
system emulators. In Information Security: 10th International Confer-
ence, ISC 2007, Valparaı́so, Chile, October 9-12, 2007. Proceedings 10,
pages 1–18. Springer, 2007.

[51] Bheemidi Vikram Reddy, Gutha Jaya Krishna, Vadlamani Ravi, and
Dipankar Dasgupta. Machine learning and feature selection based
ransomware detection using hexacodes. In Evolution in Computational
Intelligence: Frontiers in Intelligent Computing: Theory and Applica-
tions (FICTA 2020), Volume 1, pages 583–597. Springer, 2021.

[52] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Gio-
vanni Vigna, and Christopher Kruegel. B in t rimmer: Towards static
binary debloating through abstract interpretation. In Detection of Intru-
sions and Malware, and Vulnerability Assessment: 16th International
Conference, DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019,
Proceedings 16, pages 482–501. Springer, 2019.

[53] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan.
Introduction to information retrieval, volume 39. Cambridge University
Press Cambridge, 2008.

[54] Saiyed Kashif Shaukat and Vinay J Ribeiro. Ransomwall: A layered
defense system against cryptographic ransomware attacks using machine
learning. In 2018 10th International Conference on Communication
Systems & Networks (COMSNETS), pages 356–363. IEEE, 2018.

[55] Sophos. Sophos 2023 threat report - maturing criminal marketplaces
present new challenges to defenders, Jan, 2023. URL: https://www.
sophos.com/en-us/content/security-threat-report.

[56] Dan Su, Jiqiang Liu, Xiaoyang Wang, and Wei Wang. Detecting android
locker-ransomware on chinese social networks. IEEE Access, 7:20381–
20393, 2018.

[57] Kul Prasad Subedi, Daya Ram Budhathoki, and Dipankar Dasgupta.
Forensic analysis of ransomware families using static and dynamic
analysis. In IEEE Security and Privacy Workshops, 2018.

[58] Sandeep Tata and Jignesh M Patel. Estimating the selectivity of tf-idf
based cosine similarity predicates. ACM Sigmod Record, 2007.

[59] VirusTotal. Public api v2.0, 2021. URL: https://developers.virustotal.
com/reference.

[60] C+ Visual and Business Unit. Microsoft portable executable and
common object file format specification, 1999.

[61] Min Xu, Pakorn Watanachaturaporn, Pramod K Varshney, and Manoj K
Arora. Decision tree regression for soft classification of remote sensing
data. Remote Sensing of Environment, 97(3):322–336, 2005.

[62] Yara. The pattern matching swiss knife for malware researchers, 2021.
URL: https://virustotal.github.io/yara/.

[63] Bin Zhang, Wentao Xiao, Xi Xiao, Arun Kumar Sangaiah, Weizhe
Zhang, and Jiajia Zhang. Ransomware classification using patch-based
cnn and self-attention network on embedded n-grams of opcodes. Future
Generation Computer Systems, 110:708–720, 2020.

[64] Hanqi Zhang, Xi Xiao, Francesco Mercaldo, Shiguang Ni, Fabio Mar-
tinelli, and Arun Kumar Sangaiah. Classification of ransomware families
with machine learning based onn-gram of opcodes. Future Generation
Computer Systems, 90:211–221, 2019.

1688

