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Abstract—Industries of diverse sizes, ranging from retail to
critical infrastructure, are experiencing a worldwide upswing in
ransomware attacks. On a daily basis, ransomware researchers
encounter fresh samples and uncover novel ransomware families
in the wild. This research investigates ransomware’s I/O Request
Packet (IRP), a low-level file system I/O log, to understand
their behavior. We analyze IRP logs of 383 ransomware samples
belonging to 21 families to execute these tasks. To evaluate our
schemes’ capabilities on detection against execution time, we
report our empirical findings between 15 and 40 minutes of
IRP logs, whereas each sample covers 90 minutes of logs on
average. By utilizing one-class classification algorithms, e.g., One-
Class SVM, Isolation Forests, and Local Outlier Factor (LOF),
we demonstrate the identified sequences successfully discover
new ransomware upon which the classifiers were not trained.
We achieve exceptional experimental results in identifying ran-
somware families by applying Decision Trees, Random Forests,
Extra Trees, and Bagging classifiers. To highlight, we at best
obtain an accuracy of 93.94%, precision score of 93.27%, recall
score of 91.28%, and F1 score of 91.90%.

Index Terms—Dynamic Analysis, Ransomware, Machine
Learning

I. INTRODUCTION

Amidst an increasing frequency of severe cyber attacks

targeting business organizations, ranging from small to large

enterprises, ransomware has emerged as a prominent and

highly consequential threat. These attacks can potentially

paralyze entire organizations, leading to irreversible damage.

As a result, ransomware has become a focal point of exten-

sive research in the domain of malware analysis. Security

researchers have been diligently working since 2015 to not

only prevent ransomware from infiltrating victim machines but

also to propose innovative frameworks for early detection.

Remarkably, little attention has been given to understanding

ransomware behavior solely through analyzing I/O Request

Packet (IRP) logs, collected during dynamic analysis through-

out execution. To address this knowledge gap, we conduct

rigorous empirical research on low-level I/O data obtained

from diverse ransomware families, specifically focusing on

partitioning the datasets into 5-minute time frames. Through

a meticulous examination of file-based I/O operations in 21

ransomware families, our findings reveal a noteworthy trend:

the majority of encryption tasks are executed within the initial

40 minutes of the ransomware’s life cycle. Fig. 1 graphically

illustrates the number of file objects that ransomware processes

during I/O operations on the file system (e.g., read, write, mod-

ify) based on data extracted from 383 ransomware samples.

Fig. 1. A time series trend analysis graph on mean unique counts of 21
ransomware families’ File Object feature from the I/O Request Packet logs

These insights bolster our confidence in developing ran-

somware detection schemes that can effectively learn and

identify ransomware behavior within the first 40 minutes of its

encryption pattern, as evident from the IRP logs. Detecting its

presence early on accentuates the effectiveness of our proposed

detection approaches and provides defenders with valuable

time to respond promptly and effectively.

Research Questions (RQ). Our study asks the following two

important research questions to evaluate its effectiveness:

RQ1. Is there any distinguishable pattern(s) present during

ransomware encryption?

RQ2. How effectively is it possible to identify the families

of ransomware early enough during its infection through

continuous monitoring of IRP logs?

Major Contributions. The major contributions are as follows:

• We perform Time Series Analysis on 383 ransomware

samples, belonging to 21 ransomware families, to learn

the encryption behavior throughout their execution.

• We extract five notable sequences that significantly set

ransomware apart from the benign processes.
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• We utilize the One-Class Classification to discover new

ransomware based on the counts of such extracted se-

quences from different time chunks of the IRP log.

• We employ several machine learning classification algo-

rithms to empirically investigate their performances and

report our findings on multiclass classification tasks.

Paper Organization. The remainder of the paper is orga-

nized as follows. Section 2 covers the details of the I/O

request packet. Section 3 discusses the dataset used for our

study, including the description of data processing tasks, and

describes the empirical study of our work to highlight the

strategies we incorporated to address the important research

questions. We attempt to answer the research questions in

Section 4. Then, we present a case study to show a comparison

between ransomware and benign users’ behavior in Section 5.

The discussion of this research, along with its limitations and

future work to further improve upon this conducted research,

is included in Section 6. Section 7 summarizes the paper and

its contributions.

II. I/O REQUEST PACKET (IRP)

We base our study of ransomware detection on I/O Request

Packet (IRP), a low-level file system log. The structure of IRP

can be discussed in the following four categories:

A. Types of IRP Operations

Three types of I/O operations can be triggered from user

space: IRP; FIO (Fast I/O) – designed to transfer data between

user buffer and system cache directly; and FSF (File System

Filter) – designed to support IRP operations on file system1.

We notice another type of IRP operation, ERR, in the dataset.

It indicates that the I/O manager returns failure I/O operation

status; hence, we ignore such logs in this case study.

B. Process based Features

Each IRP log resembles the I/O operation of a process

initiated from the user space and recorded in the kernel space.

Several pieces of information regarding a process in the IRP

include Process ID, Process Name, Thread ID, and Parent ID.

It is worth mentioning that such IDs are only valid as long

as the process is active. For example, the Operating System

(OS) allocates a certain set of IDs to a process upon its

starting execution. When the process completes its actions,

such IDs are freed, and the OS can reallocate the same ID(s)

to another process. All this to say is that the process ID (or any

given ID) is not unique in any captured ransomware sample’s

IRP dataset. Each IRP log presents two additional pieces of

information regarding the process: pre-operation time – the

timestamp of a process that starts its operation for a given

IRP request; and post-operation time – the timestamp of the

process competes for its IRP request with either a failure or a

success status.

1IRPs Are Different From Fast I/O: https://docs.microsoft.com/en-
us/windows-hardware/drivers/ifs/irps-are-different-from-fast-i-o

C. Flag based Features

The IRP structure provides several flag-based features, or

categorical variables in other words, to cover additional infor-

mation about the type of task a process carries out. It includes

IRP Flag, IRP Major Operation Type, IRP Minor Operation

Type, Status, Inform, Transaction, and Argument 1-6. IRP

Flag feature comprises four special flags: No Cache, Paging

I/O, Synchronous API, and Synchronous Paging I/O, along

with a 32-bit Hexadecimal value. IRP Major Operation Type

feature indicates the type of the IRP operation executed by

the process, e.g., read, write, close, etc. IRP Minor Operation

Type feature also shows a process’s IRP operation type, e.g.,
query directory, start/remove an I/O device, etc.; however,

these features depend on each other. To further explain, IRP

Minor Operation Type may or may not exist when a categorical

value is available at IRP Major Operation Type. Still, we do

not find any example where a categorical value of IRP Minor

Operation is present while the IRP Major Operation Type

feature’s value is null. Status is another feature with a 32-bit

Hexadecimal value that is designed to map the IRP operation

request to a human-readable format, e.g., success, abandoned,

alerted, timeout, etc. Microsoft provides most of the possible

flag values’ definitions in its documentation2.

D. File System based Features

The IRP structure has a set of features representing intrinsic

pieces of information, such as File Object, Device Object,

File Name, Buffer Length, and Entropy, as a process interacts

with the machine’s file system. While a process accesses one

of the files in the file system, the IRP records the objects’

locations created by the process with the file’s name as string

datatype. Buffer length (a float datatype) and Entropy (a float

datatype between 0 and 1) features indicate the portion of the

file is written on memory and modified from its previous state,

respectively, from each IRP request.

III. EXPERIMENTAL METHODOLOGY

This section describes the experimental methodology to

answer the research questions.

A. Dataset Construction

We acquire the dataset from Continella et al. [6]. Their

research proposed an intuitive ransomware detection frame-

work, ShieldFS, in 2016 that successfully identified the signs

of ransomware. Additionally, it detected the ransomware-like

behavior of a process by monitoring its IRP operations. To

facilitate the file recovery feature in its framework, the authors

built a protection layer, and its job was to create a copy of the

file when a triggered process would want to interact. Each

running process had to go through an investigation phase

before being given the privilege to read/write access to the

file system. If the process was flagged as malicious, SheildFS

2https://github.com/microsoft/Windows-driver-samples/blob/
8fb512ac674df5ba129a69906d450f2a1361136d/filesys/miniFilter/
minispy/user/mspyLog.h
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would enable the Operating System to kill it and revert the file

system to its original state as it kept the copy of the file(s).

To obtain knowledge of benign user behavior, the authors

in this paper performed a large-scale IRP data collection

generated by benign applications with the help of an IR-

PLogger. The researchers built this data-collection agent to

capture the day-to-day tasks of 11 voluntary machines used

by home, office, and developer users for several weeks.

On the other side, leveraging the same tool installed on a

Windows 7 (64-bit) machine, the authors collected 383 active

ransomware samples’ IRP logs during its run-time execution.

Each ransomware sample’s captured IRP dataset covers some

of the common utility applications’ IRP logs, such as Adobe

Reader, Microsoft Office, Web Browsers, and Media Player.

In other words, not every process in the ransomware IRP

dataset is malicious. The authors in [6] claimed that only the

ransomware processes in each dataset interacted with the file

system. Following this claim, we isolate malicious processes.

B. Data Processing

After we acquire the IRP dataset and understand its struc-

ture, we begin necessary data processing tasks for every fea-

ture, such as trimming extra spaces in string-based variables,

one hot encode categorical variables [26], etc. The prime

functions are to extract the ransomware process(es) from each

ransomware sample’s IRP dataset and discover to which family

it belongs. The detailed discussion on how we perform such

tasks is as follows:

Ransomware Process Extraction. We introduce a couple of

new features in the dataset: Operation Time Elapsed – the

difference between Post-Operation Time and Pre-Operation

Time of each IRP request in seconds; and Total Unique Files
Accessed – a count-based feature derived from the activity

life span of each process with the help of File Name feature.

To further describe, we group the dataset based on Process

Name and Process ID features from which we can compute

the active period and the total count of unique files accessed

to isolate process-wise activities. With this aggregated version

of each sample’s dataset, we identify the active processes for

the longest time and access a significantly higher number of

files for every case. Thus, we separate malicious processes

from benign ones. Then, we take a step back and label each

record in the IRP dataset with either malicious or benign

in Class feature. During the experimentation on ransomware

analysis and collection of IRP logs in [6], no user action(s) was

observed. We do not find any benign process accessing regular

files (e.g., doc, pdf, etc.) stored in the file system. However,

we notice benign processes generated by Mozilla Firefox

(a web browser), for instance, perform IRP operation on

Windows system drive folders. Having said that, we consider

the extracted benign processes from the logs as the processes

that remain active in an idle state of the machine where a user

does not interact with their device.

Ransomware Family Labeling. We proceed with identifying

the family name of all 383 ransomware samples. Each sample

is represented uniquely by its SHA256 hashes. We utilize

VirusTotal API Engine [30] to scan the samples’ hashes and

receive a complete scan report containing results aggregated

from many Anti-Virus (AV) tools, such as Kaspersky, Syman-

tec, etc. If the scanned sample was detected malicious, the AV

engines labeled it with a malware family name, i.e., Kaspersky

generated the label Yakes for the ransomware samples having

“00ce22ce923e246990e43289b8b5b8191cbfc28dbee6d30b66226df0aa14b7bd” SHA-

256 hash. We observed that the labels provided by different

AV engines were not the same for the same signature hashes.

Therefore, we explore a generalized approach to assign one

family label to samples from the same family as scanned by

different AV engines. Hence, we make use of AVClass - a

malware labeling tool [27]. We feed the scan report for all the

samples in a JSON file to the AVClass tool. Then, the tool

assigns one (most probable) family name to a set of similar

samples as diagnosed by VirusTotal. We thereby obtain 21

ransomware families for all the samples used in our research.

C. Strategy to Answer RQ1: Sequence Mining and One-Class
Classification

We select the IRP Major Operation Type feature to inves-

tigate the unique pattern(s) in ransomware IRP logs that are

common among all the samples and distinctly distinguishable

from the benign IRP logs. The intuition behind this selection

is that each flag-based value is mapped with a certain IRP

request executed by the process (e.g., read, write, close, etc.).

Due to this fact, we can extract the sequence of IRP operations

performed by all the ransomware processes in our study based

on the majority number of times a certain pattern is observed.

Therefore, we can capture a meaningful representation of a

portion or a complete flow of actions and their frequency

during execution. We record frequency every 5 minutes of

the execution cycle.

To find the sequence(s), we randomly choose one ran-

somware sample’s IRP logs dataset from each ransomware

family. After partitioning each dataset in a 5-minute time

frame, we drop all other features but IRP Major Operation

Type. Then, we assign each occurred flag value into a unique

letter, i.e., we change IRP MJ Write (a flag value) to W.

Finally, we convert all these characters (which appeared as

records in the dataset) into a long string to compare them

with all other samples. Our approach is an application of

the longest string matching problem. After discovering the

longest matched string, we break it down into 4 additional

set of sequences as the frequencies of each derived set are

also significantly high. We present all our extracted sequences

in Fig. 2.

The description of the captured sequences is as follows:

• Sequence #1. This is the shortest pattern among all five

availed sequences. It covers two IRP Major Operation

Type flag values: “IRP MJ Acquire For Section Sync”

labeled as A and “IRP MJ Release For Section Sync”

labeled as R. Both flag values represent the File System

Filter (FSF) callback operation. While A indicates that

the file object is going to create a section that contains
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Fig. 2. Notable Sequences Observed from the IRP Major Operation Type
Feature for all Ransomware Families’ IRP Logs.

information about the structure size of the section along

with a flag value, R indicates that the handle is associated

with the file object for section has been closed or released.

As shown in Table I, this pattern appears the highest over

a 5-minute time frame among all 21 ransomware families’

IRP logs.

• Sequence #2. This sequence adds a flag value after

Sequence #1, that is “IRP MJ Close” labeled as C. This

indicates that all outstanding I/O requests handled by a

file object have been completed or canceled. In general, a

driver should undo whatever actions it takes upon receipt

of this request. We observe that the frequency of this

ordered sequence, A → R → C, is the second largest over

a 5-minute time frame with a median value of 554.5 (as

shown in Table I).

• Sequence #3. Similar to Sequence #2, this sequence also

adds another flag value after Sequence #1. For this case,

“IRP MJ Set Information” labeled as I is added after A
and R. The operating system (OS) sends this IRP request,

I, to set metadata about a file or file handle. Drivers are

not required to handle this request, but when it changes

any information about a file object, the OS sends this

request. As per Table I, this sequence appears fewer times

than the other two aforementioned sequences.

• Sequence #4. This is another unique pattern, contain-

ing 4 IRP Major Operation Type flag values, that we

observe among 21 ransomware families’ IRP datasets.

The sequence starts with “IRP MJ Write” labeled as

W, triggered when a device driver transfers data from

system memory to its device. The device driver sets the

Information field of the I/O status block to the number of

bytes transferred when it completes the IRP. As presented

in Table I, this sequence’s median and mean counts over

a 5-minute time frame among all studied ransomware

families are understandably lower than other discussed

sequences because of its longer length.

• Sequence #5. This sequence is the longest-matched

pattern that covers all the flag values in other sequences.

The pattern is similar to Sequence #4 with a couple of

exceptions: (1) the ordered flow I → A → R has to appear

one or multiple times after W, and (2) the pattern ends

with C. We notice that this longest sequence obtains the

median count of 3 over 5 minutes during all the studied

ransomware families’ 90 minutes execution (as pointed

out in Table I).

TABLE I
SUMMARIZED STATISTICAL COUNTS OF NOTABLE SEQUENCES

OBSERVED FROM THE IRP MAJOR OPERATION TYPE FEATURE FOR ALL

RANSOMWARE SAMPLES’ IRP LOGS OVER 5 MINUTES TIME FRAME.
MEDIAN VALUES OF 90 MINUTES EXECUTION

Sequences Min Q1 Median Mean Q3 Max Max Outlier
#1 90.5 663.25 1, 337.5 1, 615.15 2, 061.38 3, 388.5 5, 597.5
#2 17.5 233.38 554.5 669.25 926.25 1, 452 2, 077
#3 0 22.75 67.25 138.88 122.25 201.5 1, 043
#4 2 13.88 26.75 210.25 159.5 276.5 1, 801.5
#5 0 1.25 3 18.9 15.5 27 128.5

Motivation of Selecting the Sequences. As pointed out, we

derive Sequence #1 to Sequence #4 from Sequence #5
based on having significant appearances or counts among

ransomware samples. To describe this longest sequence, it

starts with a process, e.g., belonging to a ransomware process,

that creates a file object to perform write operations on the

device residing on system memory (W). Upon changing the

information about a file or file handle, i.e., requesting to delete

the file when it is closed or cancel a previously requested

deletion, the Operating System sends the following request

as a receipt that the file object stores the meta-data of the

accessed file/file handle (I). Then, the following two callback

operation requests (A and R) signify that the file object is

acquiring information on the file handle’s structure size and

is followed by releasing such information. Such processes (I
→ A → R) after the write IRP request can repeat multiple

times to support the process’s goal of handing the files in the

file system before it sends the close IRP request to indicate

that the file object is done performing all the actions (C). In

short, this sequence presents a process’s unique file accessing

flow regarding IRP operations. Other derived sequences allow

us to formulate One-Class classification tasks effectively as

features for the algorithms to train and test. For every studied

ransomware sample’s IRP log dataset, we compute all the

sequences’ counts over a 5-minute time frame. It allows us

to generate different statistical measurements through box-plot

analysis, such as minimum, first quartile (Q1) – the median

of the lower half of the records, median, mean, third quartile

(Q3) – the median of the upper half of the records, maximum,

and maximum outlier. As we gather such results for every 5

minutes from the dataset, we populate Table I and Table II with

the median values for 90 minutes of the execution cycle, that

is median values of 18 (which is derived from 90/5) records.
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TABLE II
COMPARISON OF STATISTICAL COUNTS BETWEEN BENIGN AND

RANSOMWARE PROCESSES OF NOTABLE SEQUENCES OBSERVED FROM

IRP MAJOR OPERATION TYPE FEATURE FOR ALL RANSOMWARE

SAMPLES’ IRP LOGS OVER 5 MINUTES TIME FRAME (MEDIAN VALUES

OF 90 MINUTES EXECUTION)

Sequences Min Median Mean Max
Benign Ransomware Benign Ransomware Benign Ransomware Benign Ransomware

#1 0 90.5 143.75 1, 337.5 157.06 1, 615.15 480.5 5, 597.5
#2 0 17.5 0 554.5 0.12 669.25 1 2, 077
#3 0 0 0 67.25 0.17 138.88 2 1, 043
#4 0 2 0 26.75 0.06 210.25 1 1, 801.5
#5 0 0 0 3 0 18.9 0 128.5

We further our analysis to inspect the same analogy on

sequences’ counts for benign processes. We parse through

IRP Major Operation Type feature’s records of all the benign

processes and select the highest counts for each dataset over a

5-minute time frame. After accumulating all the findings, we

generate statistical measurements for benign processes through

box-plot analysis similar to what we did for ransomware

processes. We present our comparison chart in Table II. Here,

we notice that the median counts of benign processes from

Sequence #2 to Sequence #5 is 0. Additionally, we do

not find Sequence #5 present in any benign processes in

our studied IRP dataset. The differences between benign and

ransomware processes for every extracted sequence are signif-

icant, strengthening our motivation to derive different patterns

during ransomware encryption successfully. As we gather the

unique counts of all the sequences for 21 ransomware families

in terms of 5 minutes, we begin exploring the similarities

of such sequences’ presence among all the ransomware fam-

ilies. We incorporate Principal Component Analysis (PCA)

to reduce the multivariate sequence counts’ records in two

dimensions, PCA-1 and PCA-2. We utilize PCA with different

numbers of sequences as features to plot multivariate data

in two dimensions, which we can later visualize to find a

common cluster as a resemblance of discovering similarities

among all the studied ransomware families.

These findings encourage us to further our analysis with

One-Class classification to explore the percentage of points

from the records of sequences’ counts that do not fit in

a common cluster that is to be derived by classification

algorithms. In other words, we aim to identify a boundary from

the generated observations with the help of One-Class clas-

sification algorithms to discover future ransomware samples.

For this task, we choose four algorithms: One-class Support

Vector Machine (SVM) with the non-linear kernel (RBF) [25],

Isolation Forest [15], Local Outlier Factor (LOF) [4], and

Robust Covariance. With these algorithms, we conduct Novelty
Detection analysis, which is classifying new observations that

may or may not differ in some respect from the observations

we train the classifiers with [22]. In our case, we expect to

detect as few new observations as possible that do not fit in

the cluster derived from the training data provided.

D. Strategy to Answer RQ2: Multiclass Classification

To recognize all 21 ransomware families through its IRP

logs, we carry out multiclass classification tasks with a list

of the tree-based algorithms (such as Decision Tree, Random

Forests, Extra Tree, and Bagging) and Neural Networks.

Construction of Artificial Neural Network (ANN or Neural
Networks). We construct an Artificial Neural Network as per

[2] to compare our findings with the algorithms mentioned

above. Its structure is a fully connected network with one

input layer, one hidden layer, and one output layer. The size

of its input layer neuron is the number of features in the

training set. In our case, the optimal setting for the number

of hidden layers is less than twice the size of the input

layer. The output layer contains 21 neurons to predict all

the ransomware families. To describe its network further, we

utilize the Rectified Linear Unit (ReLU) activation function

for both the input and hidden layer, while we use the softmax

activation function for the output layer [23]. We leverage an

Adam Optimization Algorithm [14] and Sparse Categorical

Cross Entropy loss function [16] for model compilation. We

incorporate the early stopping method during training to ensure

the network’s generalization ability. We monitor validation loss

for up to 3 iterations to trigger this action if the model shows

no learning development in the training phase. We select 15%

of the training records as the validation set.

We not only aim to detect ransomware families effectively,

but also we evaluate all the aforementioned algorithms’ perfor-

mances concerning different time chunks of the datasets, i.e.,
we report the classifiers’ performances in terms of Accuracy,

Precision Score, Recall Score, and F1 Score by starting from

15 until 40 minutes of IRP logs of ransomware processes

only. To process the dataset, we remove a good number of

features from the IRP logs as such do not have much impact

on predicting the classes, such as Process Name, File Name,

File Object, Inform, Transaction, Pre Operation Time, Post

Operation Time, and Argument 1, Argument 2, ... , Argument

6. We perform One-Hot Encoding to transform such into the

one-hot numeric array for the categorical flag-based features,

e.g., IRP Major Operation Type, IRP Flags, and Status. We

select only the ransomware processes’ IRP logs from all the

samples and introduce a feature, named Class, to label which

family it represents to perform multiclass classification predic-

tion on it. To ensure standard machine learning development

practices, we incorporate Stratified 5-Fold Cross-Validation

while compiling each classifier discussed above [7]. During

the split of train and test instances, these folds preserve the

percentage of IRP logs’ classes, representing 21 families.

IV. RESULTS

We answer RQ1 and RQ2 in this section.

A. Answer to RQ1: One-Class Classification

We begin discussing our empirical findings of One-Class

Classification with four algorithms, One-Class SVM, Isolation

Forest, Local Outlier Factor (LOF), and Robust Covariance,

in terms of two performance parameters: Error Train – the

percentage of training observations that do not fit in the

cluster derived from the respective algorithm; and Error Novel

Regular – the percentage of testing observations that do not
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TABLE III
COMPARISON CHART OF DIFFERENT NOVELTY DETECTION ALGORITHMS’ PERFORMANCE FOR RANSOMWARE SAMPLES’ DERIVED SEQUENCE

COUNTS FROM THE IRP MAJOR OPERATION FEATURE OF IRP LOGS

Algorithm Sequences Performance Performance in Time Chunks (in minutes)
Parameter 15 20 25 30 35 40 Median

One-Class SVM

#1, #2, and #3
Error Train 10.64% 11.11% 10.26% 8.51% 8.18% 9.52% 9.89%

Error Novel Regular 6.25% 19.05% 11.11% 9.38% 2.70% 14.29% 10.25%

#4 and #5
Error Train 10.64% 11.11% 10.26% 9.57% 8.18% 9.52% 9.92%

Error Novel Regular 25.00% 19.05% 11.11% 15.62% 10.81% 4.76% 13.37%

#1, #2, #3, and #4
Error Train 12.77% 11.11% 11.54% 10.64% 10.00% 9.52% 10.88%

Error Novel Regular 6.25% 28.57% 7.41% 6.25% 8.11% 9.52% 7.76%

All
Error Train 12.77% 7.94% 8.97% 11.70% 10.00% 9.52% 9.76%

Error Novel Regular 12.50% 23.81% 7.41% 12.50% 8.11% 7.14% 10.31%

Isolation Forest

#1, #2, and #3
Error Train 10.64% 11.11% 10.26% 10.64% 10.00% 10.32% 10.48%

Error Novel Regular 6.25% 28.57% 18.52% 9.38% 5.41% 7.14% 8.26%

#4 and #5
Error Train 10.64% 11.11% 10.26% 10.64% 10.00% 10.32% 14.96%

Error Novel Regular 25.00% 14.29% 18.52% 15.62% 13.51% 11.90% 10.48%

#1, #2, #3, and #4
Error Train 10.64% 11.11% 10.26% 10.64% 10.00% 10.32% 10.48%

Error Novel Regular 12.50% 23.81% 18.52% 12.50% 10.81% 11.90% 12.50%

All
Error Train 10.64% 11.11% 10.26% 10.64% 10.00% 10.32% 10.48%

Error Novel Regular 6.25% 28.57% 14.81% 12.50% 10.81% 2.38% 11.66%

Local Outlier Factor

#1, #2, and #3
Error Train 8.51% 9.52% 10.26% 9.57% 9.09% 9.52% 9.52%

Error Novel Regular 6.25% 28.57% 18.52% 12.50% 10.81% 4.76% 11.66%

#4 and #5
Error Train 4.26% 7.94% 5.13% 4.26% 5.45% 6.35% 5.29%

Error Novel Regular 18.75% 19.05% 14.81% 9.38% 13.51% 11.90% 14.16%

#1, #2, #3, and #4
Error Train 8.51% 9.52% 8.97% 4.26% 5.45% 9.52% 8.74%

Error Novel Regular 18.75% 23.81% 14.81% 9.38% 5.41% 2.38% 12.10%

All
Error Train 8.51% 7.94% 10.26% 7.45% 8.18% 7.14% 8.06%

Error Novel Regular 6.25% 23.81% 18.52% 9.38% 10.81% 4.76% 10.10%

Robust Covariance

#1, #2, and #3
Error Train 25.53% 25.40% 25.64% 25.53% 25.45% 25.40% 25.49%

Error Novel Regular 43.75% 42.86% 33.33% 25.00% 21.62% 21.43% 29.17%

#4 and #5
Error Train 25.53% 25.40% 25.64% 25.53% 25.45% 25.40% 25.49%

Error Novel Regular 31.25% 28.57% 25.93% 21.88% 27.03% 23.81% 26.48%

#1, #2, #3, and #4
Error Train 25.53% 25.40% 25.64% 25.53% 25.45% 25.40% 25.49%

Error Novel Regular 43.75% 42.86% 37.04% 25.00% 27.03% 19.05% 32.04%

All
Error Train 25.53% 25.40% 25.64% 25.53% 25.54% 25.40% 25.53%

Error Novel Regular 43.75% 33.33% 25.93% 18.75% 21.62% 21.43% 23.78%

fit in that cluster. We aim to achieve as minimum score

as possible in both cases. During our experimentation, we

test each classification algorithm with four different feature

settings, such as Sequence #1, #2, and #3; Sequence #4
and #5; Sequence #1, #2, #3, and #4; and All Sequences,

along with the integration of Principal Component Analysis

(PCA). Additionally, we explore the experimental results for

every setting with sequence counts extracted from 15 to 40

minutes of ransomware IRP logs. As we have 21 ransomware

families’ sequence counts, we randomly separate 16 fami-

lies’ observations (approx. 75%) to train the classifiers and

test them with the remaining five families. In this way, we

investigate how well the algorithms can perform with the

ransomware samples it did not see during the training process,

which reassembles a real-world example. After learning from

the training observations, all the classifiers derive a boundary

or region. Then, we compute the percentage of training (Error

Train) and testing (Error Novel Regular) instances that fall

outside this space.

We present a comparison chart comprising all the classi-

fiers’ performances concerning every mentioned experimental

setting in Table III. Among the experimented algorithms,

we achieved better results with One-Class SVM and Local

Outlier Factor (LOF). To highlight the best part of empirical

findings, we obtain 4.26% and 6.25% of Error Train and

Error Novel Regular scores, respectively, for 15 minutes of

extracted sequences from ransomware families. Similarly, we

attain 7.94%, 5.23%, 4.26%, 5.45%, 6.35% as Error Train and

19.05%, 7.41%, 6.25%, 2.70%, 2.38% as Error Novel Regular

for 20, 25, 30, 35, and 40 minutes of observations respectively.

Additionally, we introduce the Median column in the table to

summarize which sequence patterns as features and algorithms

perform better. From this column, we can state that the Local

Outlier Factor (LOF) algorithm with Sequence #4 and #5
possesses the least amount of Error Train, which is 5.29%
while the One-Class SVM algorithm with Sequence #1, #2,

#3, and #4 acquires 7.76% as Error Novel Regular, which

is also the least number for this set. These achieved results

firmly support our effort to extract a set of distinguishable

ransomware encryption patterns that have been further tested

with five unseen ransomware families’ sequence counts with

the help of One-Class Classification-enabled machine learning

algorithms. Notably, the Robust Covariance algorithm lags

in performance for every experimental setting; however, we

include its results in our study for the researchers and practi-

tioners in this field.

B. Answer to RQ2: Multiclass Classification

This section describes the empirical findings of each ma-

chine learning classifier studied in our study. We report the
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Fig. 3. Performance of Decision Tree, Random Forests, Extra Tree, and Bagging Classifiers in Terms of Accuracy (Top Left), Precision Score (Top Right),
Recall Score (Bottom Left), and F1 Score (Bottom Right).

TABLE IV
COMPARISON CHART OF DIFFERENT MACHINE LEARNING ALGORITHMS’
PERFORMANCE FOR MULTICLASS CLASSIFICATION USING IRP LOGS OF

21 RANSOMWARE FAMILIES

Performance Decision Random Extra Bagging ANNParameter Tree Forests Tree
15 92.69% 92.48% 92.45% 92.69% 79.78%
20 92.90% 92.85% 92.90% 92.91% 80.29%

Accuracy 25 93.65% 93.56% 93.56% 93.67% 80.01%
(in minutes) 30 93.79% 93.68% 93.76% 93.79% 80.55%

35 93.86% 93.71% 93.80% 93.89% 80.53%
40 93.92% 93.77% 93.86% 93.94% 80.55%
15 92.63% 92.48% 92.35% 92.62% 92.03%
20 92.13% 92.40% 92.48% 92.48% 89.10%

Precision 25 93.23% 93.08% 93.08% 93.27% 89.80%
(in minutes) 30 93.24% 93.13% 93.23% 93.25% 91.60%

35 93.23% 93.04% 93.21% 93.24% 72.82%
40 93.07% 92.89% 93.04% 93.09% 89.74%
15 88.65% 88.46% 88.46% 88.65% 69.88%
20 89.49% 89.38% 89.43% 89.50% 71.43%

Recall 25 90.44% 90.30% 90.32% 90.44% 71.52%
(in minutes) 30 90.95% 90.81% 90.91% 90.95% 72.47%

35 91.21% 90.98% 91.12% 91.22% 90.41%
40 91.27% 91.08% 91.19% 91.28% 73.01%
15 90.00% 89.82% 89.75% 90.00% 76.65%
20 90.28% 90.41% 90.47% 90.53% 76.68%

F1 25 91.47% 91.32% 91.32% 91.49% 77.45%
(in minutes) 30 91.76% 91.63% 91.73% 91.76% 79.25%

35 91.92% 91.71% 91.86% 91.93% 79.31%
40 91.89% 91.69% 91.82% 91.90% 77.99%

classifiers’ performances for 15, 20, 25, 30, 35, and 40 minutes

of IRP logs to evaluate how effectively such classification

algorithms can perform prediction with different amounts

of records, as it is integral in our study to explore early

detection capabilities. We present Table IV to illustrate the

performances of Decision Tree, Random Forests, Extra Tree,

Bagging, and Artificial Neural Network (ANN) classifiers in

terms of Accuracy, Precision score, Recall score, and F1 score.

We achieve neck-and-neck results from every case’s tree or

decision rule-based algorithms. It is noted that we take the

mean values of all the results generated by stratified 5-fold

cross-validation. To further highlight, these four classifiers give

us Accuracy of 92.45% – 93.94%, Precision score of 92.35%
– 93.27%, Recall score of 88.46% – 91.28%, and F1 score of

89.75% – 91.90% between 15 and 40 minutes of ransomware

IRP logs. ANN, in comparison, obtains the highest scores of

80.55% as Accuracy, 92.03% as Precision, 90.41% as Recall,

and 79.31% as F1 score. All the achieved results strongly

indicate that we have successfully detected 21 ransomware

families effectively; especially, the classifiers’ performances

with 15 minutes of IRP logs are exceptional. It suggests that

early detection of the ransomware family from its IRP logs is

very much possible with this list of algorithms.

Additionally, we present the reported scores for Decision

Tree, Random Forests, Extra Tree, and Bagging classifiers

broken into Accuracy, Precision, Recall, and F1 scores in Fig.

3. These visualizations indicate how close the results are for

the mentioned algorithms in every case and the growth in

performance parameters as we add more logs for the classifiers

to be trained. In other words, the more IRP logs we feed the

classifiers, the better performance we achieve. We also note

that the growth from 15 to 40 minutes is within 3% every

time, which is not significant and proof that the classifiers

have successfully learned the underlying pattern of IRP logs

for all 21 ransomware families in a reasonably early stage that

serves our purpose to address RQ2.

V. CASE STUDY: COMPARISON WITH COLLECTED IRP

LOGS FROM USERS’ MACHINES (BENIGN)

Along with ransomware IRP logs of 383 samples, the

collected dataset from [6] comes in with benign IRP logs. The

authors managed 11 volunteers, including developers, home,

and office users. The volunteers installed the built sniffer tool

on their machines, from Microsoft Windows 7 to Windows

10, to record their daily activities. These recorded logs were

considered the ground truth dataset based on the assumption

that cyber-attacks compromised none of these machines. Each

machine’s captured log is stored in sessions. We base our com-

parison analysis on such user sessions from all the machines

in two ways: (1) we compare the statistical counts of all the

highlighted file system features, such as the total number of

individual files accessed as well as unique file objects created

and the highest mean value of buffer length as well as entropy

per process; and (2) we provide similar comparison findings

on the counts of the sequences observed from the IRP Major

Operation Type feature as discussed above.

We begin by describing our findings of the voluntary users’

behavior on the file system features, e.g., Unique File Ac-
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cessed, Unique File Objects, Buffer Length, and Entropy. We

choose the session with the highest counts on such elements

from the multiple sessions on each machine for our analysis.

After generating counts for all four parts from 11 machines,

we compute the minimum, median, mean, and maximum

statistical measurements. To compare the generated values

with the ransomware samples, we select the counts over a

5-minute time frame of 90 minutes of ransomware execution,

and we portray the average impact of 383 ransomware samples

in a five-minute window. The rationale behind this approach

is that the differences between the respective counts are

significant because the number of files a ransomware process

will access in the file system during its execution (or in a

session) will be much higher than that of a regular user using

their machine. We present our findings in a tabular format

in Table V. We notice that the total number of unique files

accessed and unique file objects created by the voluntary users

in a typical session is much less than ransomware for all the

mentioned statistical measurements. On the other hand, we

observe that the mean values of the other two features, the

highest buffer length, and entropy from a process of users’

machines are significantly higher than ransomware processes.

From these results, we remark that in a 5-minute time frame,

the ransomware process(es) during its execution are likely to

access a notably large number of files; however, such processes

are less likely to perform many modifications on the accessed

files as much as an average user tends to modify.

TABLE V
COMPARISON OF STATISTICAL COUNTS OF FILE SYSTEM FEATURES

BETWEEN A COMPLETE SESSION OF 11 USERS’ MACHINES AND OVER 5
MINUTES AVERAGE TIME FRAME OF RANSOMWARE EXECUTION

File System Min Median Mean Max
Features Users Ransomware Users Ransomware Users Ransomware Users Ransomware

File Accessed (Unique) 30 1, 667 519 3, 065 1, 583.64 2, 851 9, 277 3, 715
File Objects (Unique) 47 1, 135 378 1, 899 470.18 2, 059 1, 521 3, 231
Buffer Length (Mean) 8, 192 5, 870 32, 768 21, 125 42, 891.8 20, 734 141, 626.25 37, 435

Entropy (Mean) 0.066 0.077 0.549 0.125 0.502 0.12 0.79 0.16

Now, we discuss our comparison analysis on the counts of

the notable sequences observed from the IRP Major Operation

Type feature (as shown in Fig. 2). We generate the counts of

all five sequences from the same users’ sessions and focus on

developing the counts on file system features. We select one

process from each session with the highest sequence counts.

Then, we compute similar statistical measurements from the

counts we derive. As the users perform much more modi-

fications on the file systems during the considered sessions,

the file I/O operations based on IRP logs are expected to

become high. Hence, the counts of all the sequences will

be significant. For this reason, we compare such generated

benign counts with all the studied ransomware samples’ counts

deriving from its entire 90-minute execution cycle. We present

our findings in Table VI to compare the counts of all five

sequences of voluntary users and ransomware. The table shows

that the ransomware process(es) shows much fewer counts in

Sequence 1 and Sequence 5. Thus, it appears to be difficult

to identify ransomware encryption being taken in place from

the frequency of such mentioned sequences. However, we can

differentiate ransomware behavior from benign user actions

based on the counts of Sequences 2, 3, and 4, as its counts

are dominant compared to the captured IRP logs from the

voluntary user machines.

TABLE VI
COMPARISON OF STATISTICAL COUNTS OF NOTABLE SEQUENCES

OBSERVED FROM IRP MAJOR OPERATION TYPE FEATURE BETWEEN A
COMPLETE SESSION OF 11 USERS’ MACHINES AND RANSOMWARE

Sequences Min Median Mean Max
Users Ransomware Users Ransomware Users Ransomware Users Ransomware

#1 604 13, 668 17, 658 27, 353 51, 984.27 29, 813.5 319, 548 63, 642
#2 110 1, 668 1, 748 12, 663 2, 922.09 11, 698.33 10, 773 22, 586
#3 0 165 63 1, 574.5 328 3, 235.78 1, 863 34, 984
#4 0 475 276 1, 483 2, 788 4, 154.11 15, 600 17, 848
#5 0 23 110 96.5 636.18 322.72 3, 154 2, 015

In this case study, we demonstrate the effectiveness of

our data-driven empirical study by comparing the behavior

between benign users’ actions and ransomware encryption

processes in terms of statistical measurements. By generating

the counts of file system features and notable five sequences

observed from IRP Major Operation Type, we analyze the

captured IRP logs of 11 user machines to evaluate how well we

can distinguish ransomware behavior from the knowledge we

gathered after inspecting 383 ransomware samples. We iden-

tify that the ransomware process(es) accesses many more files

with far fewer modifications in the file system over a 5-minute

time frame than a regular user’s interactions with the file

system. In addition, we discover that the counts of Sequence 2,

3, and 4 indicate the significant behavioral differences between

benign and malicious file I/O operations. Therefore, the case

study validates that our empirical derivations from ransomware

behavior analysis are well generalized. We leave combining

multiple feature counts, e.g., file system features and sequence

counts, to propose an effective threshold-based approach for

ransomware identification through IRP logs as future work.

VI. RELATED WORK

I/O Request Packet (IRP) log has been the center of some

state-of-the-art ransomware detection solutions since 2016. In

2015, Kharraz et al.was the first to analyze 1,359 ransomware

samples to describe the workings and effects of ransomware

and the usefulness of monitoring the file system through IRP

logs in users’ machines for successful ransomware detection

[11]. Their work was later got adapted by many security

researchers in this domain as a viable ransomware detection

technique. In 2016, Continella et al. [6] used IRP logs as a

focal point in their research to propose a real-time self-healing

virtual file system approach resilient to malicious encryption

to prevent the effects of ransomware attacks. The authors

collected a huge amount of IRP logs during benign users’

activities on ransomware-free machines, as they claimed, to

understand how ransomware typically interacts with the file

system in comparison to benign applications. On the basis

of this understanding, they created detection models that

distinguish ransomware from benign processes at runtime.

Kharaz et al. [10] utilized a minifilter driver to collect IRP logs

to monitor system-wide file system change and access many

objects of the Windows-based Operating System. The authors
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experimented with their proposed approach with 13,637 ran-

somware samples that cover both crypto and locker types of

ransomware. In 2018, Mehnaz et al. [19] leveraged IRP logs to

propose a ransomware surveillance system with the utilization

of process monitoring (upon receipt of IRP open, close, read,

write, and create operation) and file change monitoring (upon

receipt of IRP write operations). The authors successfully

tested their devised detection scheme with 14 ransomware

families. Like Huang et al. [9] and Continella et al. [6],

the authors also claimed data recovery of the encrypted files

performed by ransomware. Additionally, their built detection

tool took account of plotted decoy files on experimented

machines and monitored such files’ change operations. We

notice that the technique of planting decoy or honey files

for ransomware detection has been well adopted by security

researchers in this field [3], [8], [20], [31].

To present the interaction of ransomware with file systems

through IRP logs, McIntosh et al. [17], [18] shared some

useful pieces of information: (1) the types of the files (as well

as paths) ransomware generally targeted; (2) the number of

the IRP requests to modify file contents; and (3) the total

number of file types modified during ransomware operation.

Overall, security researchers and practitioners have already

considered IRP logs to report the findings of their studies as

they aim to prevent or mitigate the damage from ransomware

attacks [1], [5], [12]. However, apart from ransomware, it

is also worth mentioning that IRP logs are used to propose

detection techniques for other types of malware and to learn

its behavior [28], [32], [33]. Having discovered the usefulness

of IRP logs for ransomware detection, we learn granular level

and actionable insights from ransomware behavior.

We also observe that time series analysis has been widely

studied in other classes of malware [13], [21]. It allows

malware researchers and analysts to distinguish malicious and

benign processes’ behavior and perform binary classification

tasks on the extracted pattern. In this study, our prime intuition

behind employing time series analysis on the IRP logs of

ransomware and benign processes is to learn the distinguish-

able patterns with time and evaluate our proposed approaches

concerning time to report how early we can successfully detect

devastating ransomware attacks.

VII. DISCUSSION AND LIMITATIONS

We conduct an I/O Request Packet (IRP) driven analysis

to propose early ransomware detection. We use the IRP logs

collected during the dynamic analysis of 383 ransomware sam-

ples performed in [6]. The logs were collected on a Windows

7 machine in 2016. We acknowledge that Microsoft stopped

supporting Windows 7 devices on January 14, 2020. Although

most computer devices were operational with Windows 7 when

the data collection was performed, inspecting the logs captured

while performing similar experiments on a Windows 10 or

later OS-installed device will be interesting.

We utilize Sequence Mining tasks to identify a common

encryption pattern among the studied ransomware families. We

derive five common patterns or sequences from the analyzed

ransomware samples’ IRP logs. With the counts of each

pattern over 5 minutes of observations, we observe signifi-

cant differences between benign and ransomware processes.

Additionally, with similar intuition, we have successfully

discovered new instances of ransomware samples with the

help of One-Class SVM, Isolation Forest, Local Outlier Factor

(LOF), and Robust Covariance algorithms. We, however, do

not explore other sequencing applications, such as graph-

based approach [24], genome sequence [29], etc., to test the

similarities of IRP logs between two ransomware samples.

We point out several statistical measurements, e.g., mini-

mum, Q1, median, mean, Q3, and maximum, of ransomware

processes and the differences between ransomware and benign

processes to use such derived empirical knowledge to combat

a ransomware attack while it is in progress. For example, the

median values of different features from the IRP log with the

basis of the time series trend on all the studied ransomware

samples will allow security researchers and network defenders

to consider a threshold to improve their defensive malware

monitoring tool(s). Additionally, our approaches to address

RQ1 and RQ2 with the description of ransomware behavior

will inspire security practitioners to integrate such empirical

methods to analyze suspicious process(es) on a Windows-

based machine. The ransomware families were caught on or

before 2016; therefore, incorporating more recently discovered

ransomware families’ samples, such as WannaCry, NotPetya,

SamSam, Ryuk, REvil, etc., is much desired.

VIII. CONCLUSION

In this research, we aim to find actionable and granular

insights from this low-level file system I/O log, beginning

with understanding the behavior of 383 ransomware samples

(collected from [6]). We highlight the behavioral results of

time series trends and box-plot analysis of all the studied ran-

somware samples and the difference between ransomware and

benign processes. We share the statistical measurements, such

as minimum, median, mean, maximum, etc., of ransomware

and benign processes to interpret all the notable features of IRP

over 90 minutes of execution, partitioning into a 5-minute time

frame. We explore finding distinguishable pattern(s) during

ransomware encryption among all the studied ransomware

families, and thereby, we derive five sequences that can

distinctly characterize ransomware processes by separating

them from benign processes. Then, we analyze the sequences’

counts to examine if we can develop a common cluster that

will enable us to discover new ransomware variants. Therefore,

we incorporate One-Class Classification algorithms, e.g., One-

Class SVM, Isolation Forests, Local Outlier Factor (LOF), and

Robust Covariance, to help us create the automated boundary

space of such counts by training it with observations from 16

ransomware families. We investigate how well such classifiers’

derived clusters can fit the observations from the remaining

five ransomware families.

We inspect classifying all 21 ransomware families to ob-

tain a generalized understanding of how families leave their

footprint through IRP logs. We employ a long list of machine
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learning algorithms to perform experiments on this multiclass

classification task. We observe that the empirical findings

of Decision Tree, Random Forests, Extra Tree, and Bagging

classifiers outperform all other experimented algorithms. For

every experimental setting we design, we report an Accuracy

of 92.45% – 93.94%, Precision score of 92.35% – 93.27%,

Recall score of 88.46% – 91.28%, and F1 score of 89.75%

– 91.90% between 15 and 40 minutes of ransomware IRP

logs. Our approach can discover new ransomware families and

samples in the future when caught out in the wild.
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