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Abstract
Ransomware attacks have captured news headlines worldwide for the last few years due to their criticality and intensity.
Ransomware-as-a-service (RaaS) kits are aiding adversaries to launch such powerful attacks with little to no technical
knowledge. Eventually, with the successful progression of ransomware attacks, organizations suffer financial loss, and their
proprietary-based sensitive digital assets end up on the dark web for sale. Due to the severity of this situation, security
researchers are seen to conduct static and dynamic analysis research for ransomware research. Both analyses have advantages
and disadvantages, and prompt ransomware detection is expected to stop the irreversible encryption process. This research
proposes a novel static-informed dynamic analysis approach, RWArmor, which includes the knowledge of the already-trained
machine learning models based on static features to improve the ransomware detection capabilities during dynamic analysis.
The effectiveness of our approach is evaluated by predicting a novel/unknown ransomware between 30 and 120 seconds of
its execution. The random forest algorithm is utilized to accomplish this task and tested against 215 active cryptographic
Windows ransomware collected between 2014 and 2022. Based on our empirical findings, our method achieves 97.67%,
92.38%, and 86.42% accuracy within 120, 60, and 30 seconds of behavioral logs, respectively.

Keywords Dynamic Analysis · Machine Learning · Ransomware · Static Analysis

1 Introduction

Ransomware, a special type of malware, has continued to be
a significant threat for small to large organizations over the
past several years. In general, adversaries launch ransomware
attacks to cripple a company’s daily operations or hold their
digital assets hostage because of financial gains. The com-
mon ways attackers enter the victim’s digital environment
include exploitation of remote services, stolen/compromised
credentials via brute-force attacks, software vulnerabilities,
drive-by downloads, phishing, network configuration, etc.
Based on the key findings from the 2022 incident response
report from Palo Alto Networks, the adversaries spend 28
days on average inside the organizational environment before
they are detected. Once the ransomware attack begins, the
threat actor(s) encrypts the organization’s important and sen-
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sitive digital assets and then demands a hefty ransom through
cryptocurrency (e.g., Bitcoin) primarily in exchange for a key
by which the assets are likely to be decrypted. It is important
to mention that organizations not only suffer financial loss
due to their critical data/resource being inaccessible, lead-
ing to the inability to perform normal business operations,
but they also become subject to defamation as adversaries
often post confidential organizational information on the dark
web as a means of double extortion. It severely affects the
company’s reputation and hampers the public’s trust. The
Unit 42 team at Palo Alto Network outlined different sec-
tors where ransomware attacks are observed at a higher
rate, such as financial, real estate, wholesale and retail, high
tech, construction, manufacturing, transportation and logis-
tics, hospitality, healthcare, education, and professional and
legal services. A recent (May 2021) well-known example
of such an attack is the DarkSide ransomware attack on the
Colonial Pipeline network, a critical infrastructure system
supplying about half of the US East Coast’s gasoline. The
company has a 5,500-mile pipeline system that carries 2.5
million barrels of fuel per day. Because of this ransomware-
as-a-service (RaaS) affiliate program’s attack, the Federal
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Motor Carrier Safety Administration (FMCSA) announced
a state of emergency in 18 US States to tackle the signifi-
cant fuel shortages. After five days of investigations on this
largest-ever cyber-attack on an American energy system, the
company resumed its operation after payment of US$ 4.4
million worth of bitcoin.

Ransomware is not a novel threat. In 1989, a 20k floppy
drive was first infected with ransomware at an AIDS confer-
ence, and later, it was namedAIDS Trojan. Decades later, the
world noticed the first Windows-based ransomware, named
“Archiveus Trojan,” in 2006 that uses the RSA encryption
algorithm. However, security researchers and practitioners
started noticing a rise in ransomware attacks in 2012, which
has grown significantly since then. Figure 1 is presented to
depict some notable ransomware events in a brief histori-
cal timeline. Ransomware can be primarily grouped into two
categories: (1) locker ransomware—locking down the victim
machine to prevent regaining control of the affected system
and (2) cryptographic ransomware—encrypting the files of
the victim machine to demand ransom in return for the key
needed for encryption. It is reported that cryptographic ran-
somware attacks are carried out more frequently than locker
ransomware attacks [1, 2]. Although ransomware attacks are
seen to be targeted at Windows, Linux, Mobile, and Inter-
net of Things (IoT) ecosystems, this research is primarily
focused on cryptographic Windows ransomware.

Due to the capabilities of posing severe damage, ran-
somware (or malware in general) researchers work relent-
lessly to detect them and carry out two main types of
experiments: (1) static (or code) analysis and (2) dynamic
(or behavior) analysis. Static analysis primarily undergoes
inspection of the structural information to gain insights into
how it iswritten.However, ransomware authors can evade the
detection ability of static analyzers by obfuscating, encrypt-
ing, packing, or recompiling [3]. Although dynamic analysis
helps mitigate this limitation by running a sample in a safe
environment, performing environmental checks allows the
ransomware authors to sense that it is being diagnosed and
thus may not show its behavior [3].
ProblemStatement andVision.Performing static anddynamic
analysis for ransomware detection has advantages and dis-
advantages and hence becomes a difficult job. It is not only
much desired to correctly predict a malicious or untrusted
application as ransomware before it starts its infection. Iden-
tifying ransomware process as early as possible is vital to
prevent further damage. This research addresses this criti-
cal problem with a vision that incorporates both analyses
and detects novel/unknown ransomware between 30 and 120
seconds of its execution.
Proposed Approach: RWArmor. In this paper, we propose
RWArmor, a static-informed dynamic analysis approach that
uses the output of the static analysis-based machine learning
models and later includes it as a feature for the dynamic

analysis for improved detection abilities. An Application
Programming Interface (API) is developed to query the
trained models built in the Static-RWArmor project with
the static features of ransomware and benign applications.
It returns the highest probability score predicting how mali-
cious a given sample is. We perform our experiments in Any
Run,1 an interactive malware hunting service, providing a
detailed dynamic analysis report. This sandbox-generated
report (in JSON format2) contains several pieces of behav-
ioral information, including the changes in the file system,
the changes in the registry, network activities, windows API
calls made by each process, and much more. All the events
contain a timestampwhich helps us devise a timely detection
approach. To evaluate the effectiveness of our approach, we
aim to address the following two important research ques-
tions:
RQ1. How early can we detect cryptographic windows ran-
somware based on its behavioral events?
RQ2. Does static-informed dynamic analysis improve the
detection capabilities of dynamic analysis?
Major Contributions. The major contributions of our study
are broadly summarized as follows:

– The behavioral similarities among 383 ransomware sam-
ples and their behavioral dissimilarities compared with
2,245 different benign applications against execution
time are investigated based on I/O Request Packet (IRP)
logs (Sect. 3).

– An Application Programming Interface (API) is devel-
oped to leverage the extensive knowledge of static
analysis-based machine learning models, which were
trained by 2,436 ransomware samples and 3,014 benign
applications (Sect. 4).

– A novel static-informed dynamic analysis approach
named “RWArmor” is proposed for cryptographic win-
dows ransomware detection between 30 and 120 seconds
of their execution life cycle (Sects. 5, 6, and 7).

Paper Organization.The rest of the paper is structured as fol-
lows: Sect. 2 describes the background details with related
work. In Sect. 3, we discuss the dynamic analysis of ran-
somware based on IRP, which motivates our work. Our prior
work in static analysis is shared in Sect. 4. Later, our proposed
approach, RWArmor, is highlighted in Sect. 5. The method-
ology, including the dataset by which the experiments were
conducted, and the evaluation of RWArmor are presented in
Sects. 6 and 7, respectively. The limitations of our study, as
well as future work, are listed in Sect. 8. Finally, we conclude
this research in Sect. 9.

1 https://any.run.
2 https://www.json.org/json-en.html.
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Fig. 1 A brief historical timeline of ransomware attack

2 Background and related work

This section describes the background details with related
work to better understand our research.

2.1 Static analysis

Static analysis is an important step for security researchers,
who analyze a built software (e.g., a ransomware exe file)
to understand an attacker’s intent. In general, the goal is
to gather the structure details of the examining samples to
locate their malicious nature without executing it. Using
static analysis to detect and prevent a ransomware attack
is popular as it does not require kernel-level privilege or
a virtual machine for investigation [4]. Researchers lever-
age byte sequences, opcodes, header information of Portable
Executable files, functions, and imports to propose unique
mechanisms for ransomware detection [5–7]. Additionally,
using Machine Learning (ML) after extracting such infor-
mation is widely common to strengthen the capabilities of
detection schemes [8]. ML-based classifiers are built for
the feature spaces, including PE headers, PE section names,
functions, imports, and String metadata of a sample [9–13].
On the flip side, Medhat et al. [14] constructed a deep learn-
ing (DL) network for OpCode feature space to learn the

underlying ransomware pattern. Several other studies uti-
lized OpCode (machine instruction code of executable files)
for ransomware detection [15–17].

However, with the help of code obfuscation, encryption,
and packing techniques, adversaries aim to evade and defeat
powerful tools devised based on static analysis [18–20]. It
is important to mention that legitimate users use such tech-
niques to avoid stealing their intellectual property via reverse
engineering techniques. However, security researchers and
practitioners perform dynamic analysis to overcome this lim-
itation. We share its description in the following section.

2.2 Dynamic analysis

Dynamic analysis is a crucial step for security researchers as
they begin to understand the behavior of a malicious sample
(e.g., ransomware, in our case) during its execution in a safe
environment. It allows us to analyze the footprints an exam-
ining sample leaves behind in terms of windows API calls,
registry events, file system operations, network calls, etc.
The investigation of such event logs enables the researchers
to propose defensive strategies to detect a malicious process
as it is executed on a compromised machine to cause damage
(i.e., encrypting files in the case of ransomware).
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As the nature of ransomware samples is to encrypt files
in the file systems, several research works have been cen-
tered around the I/O Request Packet (IRP), a low-level I/O
log. It is a common mechanism for requesting I/O oper-
ations between the user and the kernel mode. Kharraz et
al. [21] were the first to analyze 1,359 ransomware sam-
ples to describe the workings and effects of ransomware and
the usefulness of monitoring the file system through IRP
logs in users’ machines for successful ransomware detection.
Other researchers later adapted their work in this domain as
a viable ransomware detection technique. Continella et al.
[22] used IRP logs as a focal point in their research to pro-
pose a real-time self-healing virtual file system approach,
which was resilient to malicious encryption to prevent the
effects of ransomware attacks. Then, Kharraz et al. [23]
utilized a mini-filter driver to collect IRP logs to monitor
system-wide file system change and access a substantial
number of objects of the Windows-based Operating Sys-
tem. The authors experimented with their proposed approach
with 13,637 ransomware samples that cover both crypto
and locker type of ransomware. Mehnaz et al. [24] lever-
aged IRP logs to offer a ransomware surveillance system
with the utilization of process monitoring (upon receipt of
IRP open, close, read, write, and create operation) and file
change monitoring (upon receipt of IRP write operations). In
addition to sharing research work utilizing IRP logs, using
planting decoy or honey files for ransomware detection has
been well adopted by security researchers in this field [25–
33].

In addition to observing file systems operations, secu-
rity researchers pay close attention to the traces of native
functions’ invocation and Windows API calls. They mainly
monitored such trails in the Process module to propose
impactful detection techniques [5, 22–24, 34–43]. On the
other hand, the use of network calls made by ransomware
during its execution is also studied in this domain [6, 44–
46].

The aforementioned categories of information are gath-
ered by running the ransomware samples in a variety of
environments, such as virtual machines,3 sandbox,4 emu-
lator,5 and bare metal (physical device). As we focus on
cryptographic ransomware targeting the Windows environ-
ment, we notice that researchers run their experiments on
Windows XP, Windows 7, Windows 8, and Windows 8.1
versions. After the logs generation and collection phase,
machine learning and deep learning techniques were seen
to be utilized to learn the ransomware behavior and later
detect the unseen samples. In our case, decision tree and
random forest classifiers are developed to train them on

3 https://www.virtualbox.org.
4 https://cuckoosandbox.org.
5 https://github.com/mandiant/speakeasy.

the registry, files, and process-based event logs of both
ransomware and benign processes. Additionally, such algo-
rithms led several security researchers to success in the past
[47–56].

It is also important to mention that dynamic analysis is not
free from limitations. Virtualization-based sandbox environ-
ment requires significant computational resources to examine
an untrusted application [57]. Additionally, malware authors
utilize environmental checks to enable their built samples
to sense whether it is being run on a virtual environment
[58–61]. Thus, security researchers and analysts struggle to
analyze them. Our study’s collected ransomware samples,
however, exhibit encryption-related behavior in the virtual-
ized environment (e.g., Any Run), allowing us to investigate
the event logs it left behind.

2.3 Distinction from existing related work

A tabular comparison chart is presented in Table 1 to high-
light the key attributes of some state-of-the-art peer-reviewed
academic research projects published between 2015 and
2022. All the cited papers in the table executed a dynamic
analysis approach for ransomware detection. The extracted
event logs during ransomware execution include changes
in the “registry”, changes in the “files” system, windows
API calls made by each “process”, and “network” calls.
Only a few research projects focused on network logs for
purpose solutions. However, we observe that 63% of ran-
somware samples in our study make network calls during
their encryption. For this reason, we exclude this category
of event logs from the analysis for generalization. How-
ever, we incorporate the reminder feature spaces into our
research.

Researchers utilized either machine learning (ML) or
deep learning (DL) techniques to train their built models
on the collected event logs. We leverage decision tree and
random forest classifiers to identify the difference between
ransomware and benign applications’ event logs, similar to
[22, 24, 43, 62]. To our knowledge, no other research has
monitored ransomware behavior in a Windows 10-based
sandbox environment. Additionally, this research is the first
to include the probabilistic output of static features-based
trained ML model (Static-RWArmor) into the dynamic ran-
somware analysis and test the effectiveness of built ML
models with as fewer events logs as possible. This static-
informed dynamic analysis approach, called “RWArmor,”
aims to effectively flag a malicious running process early
enough so that further damage can be prevented inside a
victim machine. We are optimistic that our study, as a contri-
bution, will help other security researchers and practitioners
in the field.
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3 Motivation: dynamic analysis of
ransomware through IRP

3.1 I/O request packet (IRP)

The I/O Request Packet (IRP) is a common mechanism for
requesting I/O operations between the user and the kernel
mode. When a user executes a command to open a file resid-
ing in the file system, the I/O system service inside the kernel
mode performs the triggered task by the user. At first, it
searches the input file name(s) and then the user’s access
rights to check whether or not the user can access the file.
Secondly, it finds the file inside the file system and allocates
the required memory for the IRP request inside the I/O man-
ager. Then, the I/O manager transfers the IRP information to
the file system driver, from where the task to open the file
gets completed. At last, after receiving an I/O status from the
IRP, the I/O manager frees the memory and returns a handle
to the user with a success or failure operation status [68].
The structure of IRP can be discussed in the following four
categories:
Types of IRPOperations.Three types of I/Ooperations can be
triggered from user space: IRP; FIO (Fast I/O)—designed to
transfer data between user buffer and system cache directly;
and FSF (File System Filter)—designed to support IRP oper-
ations on file system.6

Process-based Features. Each IRP log resembles the I/O
operation of a process initiated from the user space and
recorded in the kernel space. Several pieces of information
regarding a process in the IRP include Process ID, Process
Name, Thread ID, and Parent ID. It is worth mentioning that
such IDs are only valid as long as the process is active. For
example, the Operating System (OS) allocates a certain set
of IDs to a process upon its starting execution. When the
process completes its actions, such IDs are freed, and the
OS can reallocate the same ID(s) to another process. All
this to say is that the process ID (or any given ID) is not
unique in any captured ransomware sample’s IRP dataset.
Each IRP log presents two additional pieces of information
regarding the process: pre-operation time—the timestamp of
a process that starts its operation for a given IRP request;
and post-operation time—the timestamp of the process com-
petes for its IRP request with either a failure or a success
status.
Flag basedFeatures. The IRP structure provides several flag-
based features, or categorical variables in other words, to
cover additional information about the type of task a pro-
cess carries out. It includes IRP Flag, IRP Major Operation

6 IRPs Are Different From Fast I/O: https://docs.microsoft.com/en-us/
windows-hardware/drivers/ifs/irps-are-different-from-fast-i-o.

Type, IRP Minor Operation Type, Status, Inform, Transac-
tion, and Argument 1-6. IRP Flag feature comprises four
special kinds of flags, such as No Cache, Paging I/O, Syn-
chronous API, and Synchronous Paging I/O, along with a
32-bit Hexadecimal value. IRP Major Operation Type fea-
ture indicates the type of the IRP operation executed by the
process, e.g., read, write, close, etc. IRP Minor Operation
Type feature also shows a process’s IRP operation type, e.g.,
query directory, start/remove an I/O device, etc.; however,
these two features depend on each other. Status is another fea-
ture with a 32-bit Hexadecimal value that is designed to map
the IRP operation request to a human-readable format, e.g.,
success, abandoned, alerted, timeout, etc.Microsoft provides
most of the possible flag values’ definitions in its documen-
tation.7

File System-based Features. The IRP structure has a set of
features representing intrinsic pieces of information, such as
File Object, Device Object, File Name, Buffer Length, and
Entropy, as a process interacts with themachine’s file system.
While a process accesses one of the files in the file system,
the IRP records the objects’ locations created by the process
with the file’s name as string datatype. Buffer length (a float
datatype) and Entropy (a float datatype between 0 and 1)
features indicate the portion of the file is written on memory
and modified from its previous state, respectively, from each
IRP request.

3.2 Dataset acquisition

The IRP-based dataset is acquired from [22]. Their research
proposed an intuitive ransomware detection framework,
ShieldFS, in 2016 that successfully identified the signs of ran-
somware. To obtain the knowledge of benign users’ behavior,
the authors performed a large-scale IRP data collection gen-
erated by benign applications with the help of an IRPLogger.
The researchers built this data-collection agent to capture the
day-to-day tasks of 11 voluntary machines used by home,
office, and developer type of users for several weeks. On the
other side, by leveraging the same tool installed on a Win-
dows 7 (64-bit) machine, the authors collected 383 active
ransomware samples’ IRP logs during its run-time execu-
tion. It is noted that each ransomware sample’s captured IRP
dataset covers some of the common utility applications’ IRP
logs, such asAdobeReader,MicrosoftOffice,WebBrowsers,
and Media Player.

7 https://github.com/microsoft/Windows-driver-samples/blob/
8fb512ac674df5ba129a69906d450f2a1361136d/filesys/
miniFilter/minispy/user/mspyLog.h.
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3.3 Behavioral dissimilarities of ransomware
processes with benign processes and benign
users’ interaction over time

3.3.1 Identifying trends in ransomware behavior

To understand ransomware behavior, each ransomware sam-
ple’s dataset is partitioned in a 5-min time frame. For every
feature mentioned earlier, we conduct Time Series Trend
analysis, which helps us visualize the infection rate of all
the studied ransomware families over time. We group the
discussion in feature spaces as per the following:
Types of IRPOperation.This feature space covers three types
of features: IRP, FSF, and FIO. Every ransomware sample
needs to carry out a significant number of IRP operations
to encrypt the assets in a victim machine. We analyze the
differences of the median values between ransomware and
benign processes with all the studied ransomware samples
and present the visualization in Fig 2. From the data distribu-
tion plots, we notice that the differences in every 5 min time
frame are very high, with a maximum reported at the 20th
min for all three features.

We compute the median counts of such features’ ran-
somware processes for every studied ransomware sample and
the highest counts for benign processes. The purpose behind
this approach is to explore how much more IRP operations
would require for ransomware processes during its encryp-
tion process compared to the idle state of a machine with
frequently used software, e.g., web browser, windows tools,
etc. Now, from Table 2, it is inferred that a ransomware pro-
cess is likely to showmore than 50,000 IRP, 10,000 FSF, and
5,000 FIO operations compared to the benign processes in
any given 5-min time frame.
IRP Flags based Features. The statistical counts of this fea-
ture space, covering features like IRP Flags, IRP Major
Operation Type, IRP Minor Operation Type, and Status, do
not help us find distinguishable ransomware characteristics
regarding unique counts compared to the benign processes.
As per Table 2, the statistical data distribution differences
between ransomware and benign processes are quite mini-
mal.
File System based Features. This feature space, including
File Object, Unique Files Accessed, Buffer Length, and
Entropy, is important to learn the encryption patterns of all
ransomware samples. We illustrate visualizations of each
feature’s data distribution trend in Fig 3 to portray their differ-
ences against benign processes. Ransomware samples tend
to access the greatest number of unique files by creating file
objects within 30min of its execution. As a result, themedian
counts for Buffer Length (the size of the buffer for encrypted
files) and Entropy (the change of files in the latter part) fea-
tures are much higher.

Similar to the Type of IRPOperations feature, it is inferred
from Table 2 that a ransomware process is likely to create
1,000 (approx.) file objects, access 2,000 (approx.) unique
files, and obtain more than 10,000 and 0.07 buffer length and
entropy, respectively, compared to the benign processes in
any given 5-min time frame.

3.4 Comparison with collected IRP logs from users’
machines (Benign)

As mentioned before, the collected dataset from [22] comes
in with benign IRP logs of 11 volunteers’ machines, rang-
ing from Microsoft Windows 7 to Windows 10, to record
their daily activities. These recorded logs were considered
the ground truth dataset based on the assumption that none
of these machines were compromised by cyber-attacks. Each
machine’s captured log is stored in sessions. We base our
comparison analysis on such user sessions regarding the sta-
tistical counts of all the highlighted file system features.

The file system features, e.g., Unique File Accessed,
Unique File Objects, Buffer Length, and Entropy, are con-
sidered to generate counts for the statistical measurements
of minimum, median, mean, and maximum. To compare the
computed values with the ransomware samples, we select the
counts of 5 min IRP logs from 90 min of ransomware execu-
tion. The hypothesis behind this approach is that the number
of files a ransomware process will access during its execu-
tion will be much higher than a regular user using his/her
machine. Therefore, we present our findings in a tabular for-
mat in Table 3. We observe that the total number of unique
files accessed and unique file objects created by the volun-
tary users in a standard session is much less than ransomware
for all the mentioned statistical measurements. On the other
hand, the mean values of the other two features, the highest
buffer length and entropy from a process of users’ machines,
are significantly higher than ransomware processes. From
these results, our remark is that in a 5-min time frame, the
ransomware processes are likely to access notably large num-
ber of files. However, ransomware processes are less likely to
perform much modifications on the accessed files compared
to an average user based on entropy feature.

3.5 Concluding remarks

From our data-driven analysis of 383 ransomware samples’
IRP logs, ransomware processes access many more unique
files in a given 5-min window compared to both other benign
processes during its encryption and standard user sessions.
[69] involved in constructing an effective Artificial Neural
Network to detect ransomware by incorporating all the col-
lected IRP logs of every ransomware encryption process, as
well as benign users’ sessions. Performing this case study
motivates us to carry out detecting ransomware with as less
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Fig. 2 Data distribution difference trend between ransomware and benign processes of IRP, FSF, and FIO features in the Type of IRP Operation
feature space

Table 2 Statistical data
distribution differences of
notable feature spaces between
the IRP logs of ransomware and
benign processes over 5-min
time frame (� indicates
unique counts—denoted
as U, while × does not)

Feature Space U Time Series Trend (Median Values)
Group Features Min Mean Median Max

Types of IRP × 16,264 56,536.6 51,637.8 100,793

IRP FSF × 8,187 13,336.3 12,197.5 20,698

Operations FIO × 333 5,581.8 5,393 10,889

IRP IRP flags � 0 1.38 1 9

Flags Major Opn � 0 1.22 1 3

Based Minor Opn � 3 3.72 4 5

Features Status � 3 5.33 5 8

File File objects � 158 1,079 1,068 2,063

System File accessed � 783 2,002 1,913 3,356

Based Buffer length × 820 10,553 11,684 21,744

Features Entropy × 0.03 0.074 0.071 0.11
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Fig. 3 Data distribution difference trend between ransomware and benign processes of File Object (top left), Unique Files Accessed (top right),
Buffer Length (bottom left), and Entropy (bottom right) features in the File System-based feature space

Table 3 Comparison statistical counts of file system features between a complete session of 11 users’ machines and over 5 min average time frame
of ransomware execution (90 min session)

File system features Min Median Mean Max
Users Ransomware Users Ransomware Users Ransomware Users Ransomware

File accessed (Unique) 30 1,667 519 3,065 1,583.64 2,851 9,277 3,715

File objects (Unique) 47 1,135 378 1,899 470.18 2,059 1,521 3,231

Buffer length (Mean) 8,192 5,870 32,768 21,125 42,891.8 20,734 141,626.25 37,435

Entropy (Mean) 0.066 0.077 0.549 0.125 0.502 0.12 0.79 0.16

data as possible because the more data we include, the easier
it gets to identify them. Additionally, the longer we wait, the
more damage it causes to a victim’s machine. For this reason,
we challenge ourselves to detect ransomware with less than
5 min of a behavioral log-based dataset to propose an early
detection approach.

4 Our prior work: static-RWArmor

In addition to understanding ransomware’s behavioral dis-
similarities comparing with benign instances, the structural
dissimilarities are identified between 2,436 ransomware
samples and 3,014 benign applications to develop a static
analysis-based ransomwaredetection approach called "Static-
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RWArmor." The details of how itwas implemented are shared
in this section.

4.1 Portable executable (PE) metadata

The portable executable (PE) is an object file ofWindowsOS
including .exe (executable file), .dll (dynamic link library),
.sys (system file), etc., as extensions. The metadata of a PE
file contain several pieces of information, such as file headers,
section tables and import libraries. The file header includes
the type of targeting machine, the size of the section table,
the time and date that the file was created, the flags indicat-
ing different attributes of the file, etc. Additionally, it tells
us the magic number of the file, the size of the code, initial-
ized data, the image, the subsystem required to run the image,
DLL characteristics, and the address of the entry point. In the
section header, we can extract information on each section’s
virtual address, virtual size, and the size of raw data. We
focus more on the import address table which contains infor-
mation on both the libraries and the functions used by the PE
file. For example, “47363b94cee907e2b8926c1be61150c7"
is a ransomware sample from the Cryptowall family. It
is bound to dbghelp.dll, KERNEL32.dll, COMDLG32.dll,
ADVAPI32.dll, USER32.dll, and COMCTL32.dll import
libraries. Additionally, we can also extract the “Append-
MenuA", “CallWindowProcA", “CharLowerBuffA", “Char
UpperA", etc. functions that are required from the
“USER32.dll" import library [8].

4.2 Dataset and feature set construction

We gather ransomware PE data from Sophos ReversingLabs
20 Million (SOREL-20M) dataset [70]. The repository
extracted various disarmed malware samples’ features and
metadata. The types of malware samples include adware,
flooder, ransomware, cryptominer, file infector, installer,
spyware, etc., from which we obtained several packed ran-
somware samples collected between 2018 and 2020. With
that, we accumulate 2,436 ransomware samples’ PE meta-
data in total. We double-check with VirusTotal by providing
the hashes of each sample to confirm that they are ran-
somware samples. To accomplish this task, a Python8 script
utilizing VirusTotal API v3 Engine9 is written, which lets
us scan the hash of each sample. In return, it sends back a
detailed report of the sample with over 70 antivirus scanners’
evaluation onwhether or not it is labeled asmalicious or safe.

In addition to collecting the ransomware dataset from
the SOREL-20M repository, we randomly picked benign
applications’ metadata for the binary classification tasks. We
include a list of cloud-based backup and file-compressing

8 https://www.python.org.
9 https://developers.virustotal.com/docs/api.

software as such applications interact heavily with the file
system. Overall, 3,014 benign applications’ PE metadata are
stored, and a PE metadata extraction engine is built using
Python 3 programming language to process the dataset.

Data StoringMethod. All the pieces of PEmetadata infor-
mation are grouped into the following categories, which can
be treated as a tabular format of a relational database.

– Sample Info: MD5, Sample Size, Collected Year, and Is
Malicious.

– File Generic Info: MD5, SHA1, SHA256, First Seen by
Virus Total,MimeType, File Type, PEFile, and File Type
Extension.

– Library Imports: MD5 and Library Names.
– Function Name Imports: MD5 and Function Names.
– Sections: MD5, Section Name, Raw Size, Virtual Size,
and Entropy.

– PE Info: MD5, Subsystem, Subsystem Version, Machine
Type, Time Stamp, Code Size, Initialized Data Size,
Uninitialized Data Size, OS Version, Magic, and PE
Entry Point.

– VirusTotal Info: MD5, Scan ID, Total Scan Engines, and
Number of Positives.

Our hope is that other researchers in the field can benefit
from our dataset’s structured formation.

4.3 Binary classification

Binary classification tasks are performed to discover the
structural dissimilarities between ransomware and benign
application. We focus on imports and function names as
feature spaces to investigate if supervised machine learning
algorithms can learn the underlying patter. Support vector,
decision tree, random forest, AdaBoost, and gradient boost-
ing classifiers are selected to achieve this task. The following
four experimental settings are administered to evaluate the
mentioned algorithms.

– Imports. We select the “imports” feature space for our
first experiment setting.We obtain 2,576 unique numbers
of imports for all the ransomware samples and benign
applications. Then, we create a sparse matrix of 5,450
rows (ransomware and benign applications) and 2,577
columns (imports and target class). We apply Principal
Component Analysis (PCA) [71] to reduce the size of
columns into two. It enables us to capture 23% of infor-
mation.

– Function Names. Similar to the first experimental set-
ting, we choose the “function names” feature space for
our second one. For this case, we gather 105,546 unique
numbers of function names. Similarly, after creating the
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sparse matrix, we utilize PCA while capturing 13% of
information of the entire matrix dataset.

– Imports and Function Names Combined. For our third
experimental setting, we combine both “import” and
“function names” feature spaces. The size of the sparse
matrix becomes 5,450 rows and 108,123 columns. Then,
applying PCA similarly gives us 13%of information cap-
ture.

– Numeric Feature Set. The last experiment focuses on the
numeric feature set that helps us detect ransomware. For
every ransomware sample and benign application, we
compute imports’ count, function names’ count, section
names’ count, sample size, Code Size, Initialized Data
Size, Uninitialized Data Size, and Resource Languages
w/ PCA. We have not applied PCA after processing the
dataset.

Scikit Learn [72], a well-documented machine learning
package, is utilized to apply principal component analy-
sis (PCA) on the high-dimensional feature space of the
processed dataset. Now, fig. 4 is presented to show the dis-
tribution of ransomware samples and benign applications’
feature spaces for experiments 1, 2, and 3. The visualization
motivates us to select tree-based supervised learning algo-
rithms because linearly separating two classes’ data points
does not appear feasible.

4.4 Empirical findings

As mentioned in the previous section, four experimental set-
tings are designed based on the selected feature spaces to
discover the structural dissimilarities between our studied
ransomware samples and benign applications. We accom-
plish this task by choosing two different kernels of support
vector classifier: RBF and polynomial, decision tree, random
forest, AdaBoost, and gradient boosting. Scikit Learn [72]
was used to apply the mentioned algorithms. The evaluation
of such mentioned classifiers is performed in terms of:

– Accuracy. This metric describes the correct prediction of
a given classifier.

– Precision. It is the ratio of the true positive records to all
positively labeled instances.

Precision = True Positive

True Positive + False Positive

– Recall. It is the ratio of the true positive instances to all
instances that should have been labeled positive.

Recall = True Positive

True Positive + False Negative

– F1 Score. This metric is the harmonic mean of precision
and recall.

F1 Score = 2 × Precision × Recall

Precision + Recall

The performance of all the classifiers for the mentioned
experiments is reported in a tabular format (see Table 4).
It is noted that we perform 5-fold cross-validation for all
cases, and the documented scores for all the metrics are
their mean values. We observe that the random forest classi-
fier has outperformed others for every designed experiment.
Among experiments 1, 2, and 3, random forest achieves the
best performance for experiment 3, that is 88.39% of accu-
racy, 88.28% of precision, 87.77% of recall, and 87.93% of
F1 score. However, we notice that it performs even better
for experiment 4, where accuracy, precision, recall, and F1
scores are 91.75%, 91.99%, 90.47%, and 91.05%, respec-
tively.

It is important to mention that all the ensemble learning
methods and decision tree have produced satisfactory results.
In other words, accuracy, precision, recall, and F1 scores are
in the high 80s for experiment 3 while in the low 90s for
experiment 4.

4.5 Concluding remarks

The aforementioned static analysis approach, named Static-
RWArmor, allows us to automate the task of predicting
ransomware based on its structural information (PE Meta-
data) without execution. The intensive training process
accounts for many ransomware and benign applications. Our
aim is to reuse the built random forest classifiers as an offline
API (application programming interface) for novel/unknown
ransomware samples, as well as benign processes, to gener-
ate a probabilistic score of it being malicious. For example,
the trainedmodels can be queried by providing the above fea-
ture information. In return, a score ranging between 0 and 1
should be received to signify how confident the model is that
the sample is malicious.We can potentially integrate “Static-
RWArmor” prediction scores into the “RWArmor” approach
as a feature for both ransomware and benign applications
to achieve a static-informed dynamic analysis approach for
ransomware detection.

5 Overview of our approach: RWArmor

This section describes our proposed static-informed dynamic
analysis approach, named “RWArmor.”

Figure 5 depicts the overview of our static-informed
dynamic analysis approach for cryptographic windows ran-
somware detection. The approach integrates the knowl-

123



Md. A. Ayub et al.

Fig. 4 Visualization of different feature spaces after applying principal component analysis (PCA)

Fig. 5 Overview of RWArmor,
our proposed static-informed
dynamic analysis, for
cryptographic windows
ransomware detection with as
fewer behavioral event logs as
possible

edge acquired in the Static-Armor project, mentioned ear-
lier, as a predictive pipeline. We send the static features
(e.g., Combination of Imports & Function Names and
Numeric Features) of the ransomware under examination
and applications executed in the benign sessions to query
the trained models. The developed API is used to query
the models to receive a prediction score for two feature
space groups instantly. However, we consider the high-
est probability value between the models. For example,
e3b7d39be5e821b59636d0fe7c2944cc is a Petya
ransomware family’s sample.10 With the developed static
features extraction engine, we extract the above-mentioned
feature groups and then query the models via API. As

10 https://www.virustotal.com/gui/file/
e3b7d39be5e821b59636d0fe7c2944cc.

a result, we obtain 0.81 as a malicious score from the
combination of imports and function names based ran-
dom forest classifier, while 0.06 as a malicious score from
the numeric features-based Random Forest classifier. We
select the highest value (0.81, in this case) between the
two probabilistic scores. In other words, it signifies that
the static analyzer is 81% sure that the given sample
is malicious. The rationale behind this approach is that
we base our analysis on a sensitive setting. On another
instance, d76c47211551f7c1f1427b4bad8e6aa9, a
Windows backup software named EaseUS Todo Backup,11

was used in one of the benign sessions. By following the
same steps, the combination of imports and function names
based model predicted it being a malicious sample as 0.68,

11 https://www.easeus.com.
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69 while itwas 0.33 for the other one.Althoughweknow that the

sample is benign in nature, we choose the value 0.68 tomain-
tain a generalized approach. Our goal is to design a resilient
setting for the experiment, and thus, we query two models
instead of one. To further describe, we noticed that there are
several samples where the Resources Directory table could
not be extracted. As this information was included in the
Numeric Feature set, we could not query the model; how-
ever, we achieved predictive results from the other model.
In this way, we assign the output of Static-RWArmor to 215
ransomware samples, where the median value is 0.71, and
101 benign session applications, where the median value is
0.15.

An online virtualization-based sandbox environment
named Any Run is utilized to conduct dynamic analysis
while Windows 10 Professional (build: 19044, 32-bit) is
selected as the target operating system inside the platform.
For every analyzed session, we obtain a detailed report that
outlines the behavior of the examined sample.12 A generic
format of such reports is illustrated in Fig. 6. From a set of
aggregated pieces of information encapsulated in the JSON
file, we focus on “incidents”, “processes”, “network”, and
“modified”. Multiple processes can be involved during the
ransomware process, and each of them is assigned with a pid
(Process ID). Therefore, we locate ransomware processes
from the incident segment of the report and record the times-
tamp at which they start execution. Knowing pid helps us
build the following feature sets for our data-driven analysis.
File System Changes. The prime focal point of our analysis
is to monitor the interaction of ransomware processes with
the files system. Therefore, we parse through the modified
section of the report to identify the changes in file system
events caused by them throughout their execution.
Registry Changes. The registry changes reveal insightful
information in ransomware detection [35]. Malware authors
leverage registry in Windows environment for persistence
[3]. We discover registry keys based on events created,
deleted, and modified for benign applications and ran-
somware processes. To capture them, we similarly browse
the modified section of the report.
Processes-Windows API Calls. The report documents all the
events invoked by every process in the process section. It
contains all the modules/DLLs imported by every process,
which provides an understanding of the Windows API Calls
made by them.
Network Logs. The generated reports store the network logs
regarding DNS requests, HTTP requests, Connections, and
Any Run analyzed Threats for each process. Asmentioned in
the beginning, about 63% of ransomware in our study exhibit
network-based events. Therefore, this category of events are

12 https://app.any.run/tasks/39375aa1-7bd6-470f-b6de-
42b92f471253.
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Fig. 6 A generic example for
Any Run sandbox report in
JSON format

excluded from our research for the sake of generalization
purposes.

6 Methodology

6.1 Dataset construction

This section discusses the dataset collection phase to con-
duct the experiments. As mentioned, we utilize the Any Run
platform to capture the behavioral Windows event logs for
ransomware and benign applications. We choose a 32-bit
Windows 10 Professional operating system to run the exper-
iments. The virtual environment provides a wide array of
installed software packs, such as Opera, Microsoft Office
Professional 2019, VLC Media Player, WinRAR, Google
Chrome, Java 8, Skype, Adobe Acrobat Reader DC, Adobe
Flash Player, CCleaner, FileZilla Client, Microsoft Edge,
Mozilla Firefox, Notepad++, etc. In addition to the exam-
ining sample(s), the sandbox-generated report contains the
event logs of such benign applications.
Ransomware Dataset. 215 active cryptographic Windows
ransomware are supplied to the sandbox to investigate their
behavior. Based on the VirusTotal API service,13 we perform
a couple of checks by passing the hash value of each sample:
(1) which ransomware family it belongs to and (2) when it
was found in thewild.We discover that the samples belonged

13 https://developers.virustotal.com/reference/overview.

to 34 ransomware families and were collected between 2014
and 2022 through this process.

We continue running the experiments until any form of
ransom note (e.g., as a pop-up window, a desktop back-
ground, an HTML file, a text file, etc.) is observed. We
excluded the samples for whichwe did not notice any ransom
note; however, the final count is 215. A visualized example of
such types of notes is depicted in Fig. 7. On average, it took
approximately 10 min from the start of execution to exhibit
this type of note by a ransomware.

The studied ransomware families are Babuk, Bart, Cerber,
Conti, Critoni, Critroni, Cryakl, Cryptowall, Cuba, Dalexis,
Darkside, Dharma, Gandcrab, Hanta, Jigsaw, Lockergaga,
Locky, Matrix, Ouroboros, Petya, Phobos, Ragnarok, Rapid,
Rokku, Ryuk, Satana, Sepsis, Sodinokibi, Spora, Stop, Tes-
lacrypt, Unlock26, Wannacry, and Yakes.
Ground Truth (Benign) Dataset. The collection of benign
logs is similarly achieved. In addition to capturing logs from
the benign applications mentioned in the beginning, 101
benign sessions are recorded by interacting with 163.19 MB
of files in the file systems on average. To highlight, we incor-
porate 24 Windows-based file compressing and cloud-based
backup software To mimic the ransomware-like behavior. To
further describe, we compress and then decompress all the
files in the file systems for each file-compressing applica-
tion. Additionally, we backed up all the files residing on the
disc when we operated the cloud-based backup applications.
Each process and its activities during the benign sessions are
labeled as the ground truth dataset.
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Fig. 7 A pop-up window to show the ransom note for a Jigsaw ransomware family’s sample (MD5 hash: 2773e3dc59472296cb0024ba7715a64e)

The construction of the two aforementioned categories of
the dataset using the Any Run platform’s premium subscrip-
tion has taken close to 2 months.

6.2 Dataset processing

Webegin processing the generated reports by parsing through
the JSON files. As described the previous section, we first
identify ransomware processes to label them as malicious,
while the rest of the processes, including benign sessions, are
labeled as safe.We create the feature spaces corresponding to
each process. In other words, the records in the “file” system
changes, “registry” changes, and “process” feature groups
reflect the behavior of a certain process during its execution
life cycle. We document the start and the end time of such
processes so that we can potentially focus on ransomware-
based processes’ events up to a certain time from its initiation.

Based on each process’s activities, the following features
are constructed in the respective feature groups:

– Files. The features included in this group are MD5
(key-value), File Name, File Type, Mime Type, size,
pid, Timestamp, and Class. To further describe, MD5
represents the hash value of a benign application or a

ransomware sample. Each process is assigned with an
ID, pid. We save the name of the file a process interacts
with, the type of the file, along with its mime type, and
the size of the file. The class is a binary valued feature,
where 0 is safe, and 1 ismalicious. To highlight a keyfind-
ings in our research, we compute in a 2-min time frame
that a ransomware process accesses 148,206 unique files
(median value), while a benign process interacts with
34,738 unique number of files (max value).

– Registry. We list the features for this case as MD5 (key-
value), Key, Name, Operation Type, pid, Timestamp, and
Class. MD5 plays the same role as per the above dis-
cussion. Each record indicates what type of operation a
process makes to the registry (signifying with registry
name and registry key value). The unique registry key
operations include “write”, “delete value”, and “delete
key” for both benign and ransomware processes. How-
ever, we calculate that all the ransomware processes
modify 980 unique registry keys, while the number is
2,070 for the benign processes. We suspect it is the
case because we installed several applications during the
benign sessions.

– Process. This feature group contains MD5 (key-value),
Command Line, File Name, File Type, Main Process,
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Fig. 8 Visualization of the generated process graph for a Jigsaw ransomware family’s sample (MD5 hash: 2773e3dc59472296cb0024ba7715a64e)

API Name, pid, Parent pid, Start Timestamp, End Times-
tamp, and Class as features. To share the details of
the aforementioned features, we observe that the main
ransomware benign process causes the start of other
child processes to encrypt the files. By mapping the
records with MD5 values, we locate the main process
involved in the operation with the help of the “Main
Process” feature (a binary flag) and then locate its sub-
processes to label them as malicious. The features pid
and Parent pid are used for this approach. The other
processes are then labeled as benign. The additional
pieces of information per process include the name and
the type of the file from which the process was trig-
gered (i.e., an exe file named “jigsaw.exe” as per Fig.
8). It is inferred from the process graph visualization that
two processes carry out the damage posed by the Jig-
saw ransomware in this case. Additionally, it helps us
store the actual start and end time of each ransomware
sample’s execution. The loaded DLLs for each process
are recorded in the API Name feature. The command
line feature demonstrates the argument passed to the
Windows command to execute a certain process. MD5
values reflect the hash values for ransomware samples
and the benign applications executed during the experi-
ments.

6.3 Experimental setup

Theexperimental setupused to evaluate our proposedmethod
is described in this section. The description concerning the
dataset processing illustrates a vivid picture on how we
isolate the ransomware and benign processes. To learn the
underlying pattern between them, we perform further fea-
ture processing to combine the process-based information.
We join the records based onMD5 and pid to obtain features
per ransomware sample/benign application for all the feature
groups. Additionally, we compute the numeric features for
the Files and Registry feature group. However, we create a
large sparse matrix for the Process feature group to capture
the information ofWindows API calls. To share the structure
of a sparsematrix, the columns include unique file type items,
unique command line items, and unique API names. Then,
principal component analysis (PCA) is applied to reduce its
dimension. A visualization in Fig. 9 is shared to showcase the
distribution of 2-dimensional data plots between ransomware
and benign applications. Finally, we conclude the processed
feature set as follows.

– Files.

– Number of unique files accessed (x[0]),
– Number of unique mime type (x[1]),
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Fig. 9 Visualization of the process feature space after applying princi-
pal component analysis (PCA)

– Number of unique processes (x[2]),
– Minimum size of file (x[3]),
– Q1 size of file (x[4]),
– Mean size of file (x[5]),
– Median size of file (x[6]),
– Q3 size of file (x[7]), and
– Maximum size of file (x[8]).

– Process.

– 1st Principal Component (x[9]), and
– 2nd Principal Component (x[10]).

– Registry.

– Number of unique registry key (x[11]).

A Python 3 programming language-based “Data Process-
ing Engine” is developed that scans all the reports and then
performs all the tasks mentioned above for the generation
of finalized feature set. The engine is equipped to create the
feature set of ransomware for different time frames based
on the timestamp. We begin our analysis with 120 seconds
of event logs starting from the execution time for all the
respective studied ransomware samples.We obtain the actual
timestamp for every ransomware sample. As it is in mil-
liseconds (t), we focus on 120 seconds (t + 120, 000), 60
seconds (t + 60, 000), and 30 seconds (t + 30, 000)-based
time windows. We do not proceed any further because only
55 ransomware samples (25%) in our study leave their behav-
ioral footprints onFiles, Registry, andProcess featureswithin
15 seconds from their execution. Due to the loss of most ran-

somware samples, we stop producing as low as 30 seconds
of event logs. Then, decision tree and random forest clas-
sifiers are utilized to learn the behavior of ransomware and
benign applications and distinguish them based on the pro-
cessed dataset. To avoid overfitting the classifiers, we apply
stratified 5-fold cross-validation for every experiment during
the training process. Such experiments will help us address
RQ1 as we explore training and testing the detection capabil-
ities of machine learning models with as fewer ransomware
behavioral event logs as possible.

In order to address the next research question (RQ2), one
more feature is included in the processed feature set. As
described the section 5, the API returns a predictive out-
put of Static-RWArmor for all the benign applications and
ransomware samples. As a result, we rerun the training and
testing processes of the mentioned machine learning models
to check if the detection capabilities are improved for the
different time frames of execution event logs.

7 Evaluation

This section evaluates the effectiveness of our approach by
addressing the research questions. The performances of the
built random forest classifier are reported for different exper-
imental settings based on accuracy, precision, recall, and F1
scores.

7.1 Addressing RQ1: dynamic analysis results

We begin sharing the empirical findings of decision tree
and random forest classifiers for the processed feature set
described in section 6.3. Our aim is to document the machine
learning models’ performances for ransomware detection.
We start by describing how the decision tree algorithm
produced the rules to perform prediction based on all the fea-
tures. A visualization of the decision tree structure is shared
in Fig. 10, where it incorporates Files (x[0] – x[8]), Process
(x[9] and x[10]), and Registry (x[11]) features.

As per the figure, the decision tree is first split based on
a process feature—1st principal component, x[9]. Then, fur-
ther splits are taken place based on the last process feature,
2nd principal component (x[10]), and a file-based feature
(number of unique files accessed, x[0]). The rest are primar-
ily dependent on file-based features.We note that the registry
feature (x[11]) does not play an intrinsic role in this case, as
the decision rule is observed at the tree’s bottom. The visual-
ization is generated with 120 seconds of ransomware events
and the entire sessions of benign applications. The Files and
Process feature groups are essential for our study to predict
ransomware for dynamic analysis.

We are motivated that the random forest classifier will
achieve better prediction performance as it is configuredwith

123



Md. A. Ayub et al.

Fig. 10 Visualization of the built decision tree structure based on files, registry, and process feature spaces to showcase the rules used for prediction
without static-RWArmor

100 estimators with “gini” criterion. The built models’ effec-
tiveness is checked with four different experimental settings:
(1) Only files feature (x[0] – x[8]), (2) Files and Registry
features (x[0] – x[8] and x[11]), (3) Files and Process fea-
tures (x[0] – x[10]), and (4) Files, Registry, and Process
features (x[0] – x[11]). The performances for the mentioned
experimental settings are reported in Tables 5, 6, 7, and 8,
respectively.

As highlighted in the dynamic analysis part of Table 5, the
performance of decision tree and random forest classifiers is
documented with 120, 60, and 30 seconds of execution event
logs of ransomware. The accuracy, precision, recall, and F1
scores drop as we shrink the ransomware dataset based on
execution time. For example, the random forest classifier’s
precision scores for 120, 60, and 30 seconds execution time
are 93.38%, 88.68% (4.7 point drop from 120-second), and
82.51% (10.87 point drop from 120-second), respectively.
A similar trend can be noticed for other metrics, as well.

For all the experiment settings, it is seen that random forest
outperforms the decision tree classifier.

As illustrated in Table 6’s dynamic analysis section, a sim-
ilar trend is observed where the performance drops as we
reduce the event logs for the testing process. We compare
Table 5 (Files features) and Table 6 (Files and Registry fea-
tures) and find up to 2% increase for random forest classifier
in terms of accuracy, precision, recall, and F1 scores for every
experimental setting. For example, the recall scores for the
random forest classifier with 120, 60, and 30 seconds of exe-
cution timeare 93.51%forFiles features and95.11%forFiles
and Registry features, 88.39% for Files features and 89.39%
for Files and Registry features, 82.52% for Files features and
83.03% for Files and Registry features, respectively.

To describe the models’ results for the Files and Process
features, we take a look at the dynamic analysis part of Table
7. A similar drop in performances corresponding to the exe-
cution time is noticed. However, by comparing this tablewith
the other two (Table 5 and 6), we achieve better empirical per-
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Table 5 Binary classification performance of built machine learning models with only file features

ML models Execution time Dynamic analysis Static-informed dynamic analysis

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Decision tree 120 0.8751 0.8749 0.8707 0.8708 0.8843 0.8904 0.8715 0.8753

Random forest seconds 0.9336 0.9338 0.9351 0.9313 0.9442 0.9409 0.9479 0.948

Decision tree 60 0.8405 0.8446 0.8491 0.8499 0.851 0.8538 0.8594 0.8502

Random forest seconds 0.8838 0.8868 0.8839 0.8837 0.9095 0.9177 0.9078 0.9075

Decision tree 30 0.7864 0.7883 0.7807 0.7861 0.7947 0.7952 0.8085 0.7817

Random forest seconds 0.824 0.8251 0.8252 0.8272 0.8342 0.8311 0.8334 0.8312

Table 6 Binary classification performance of built machine learning models with file and registry features

ML models Execution time Dynamic analysis Static-informed dynamic analysis

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Decision tree 120 0.8535 0.8552 0.858 0.8583 0.8687 0.8757 0.8569 0.8586

Random forest seconds 0.9486 0.9533 0.9511 0.9512 0.9504 0.9598 0.951 0.9538

Decision tree 60 0.83 0.8372 0.8391 0.8392 0.8467 0.8402 0.8435 0.8445

Random forest seconds 0.8938 0.8968 0.8939 0.8937 0.9043 0.9068 0.9026 0.9018

Decision tree 30 0.7893 0.7831 0.7888 0.7739 0.7883 0.7913 0.7994 0.7746

Random forest seconds 0.8276 0.8373 0.8303 0.8305 0.8341 0.839 0.8331 0.8337

Table 7 Binary classification performance of built machine learning models with file and process features

ML models Execution time Dynamic analysis Static-informed dynamic analysis

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Decision tree 120 0.8836 0.8885 0.8809 0.8866 0.8959 0.8993 0.88195 0.8868

Random forest seconds 0.9613 0.9627 0.95897 0.9592 0.9767 0.9761 0.9712 0.9757

Decision tree 60 0.8543 0.8583 0.8537 0.8537 0.8638 0.8654 0.8614 0.8626

Random forest seconds 0.9019 0.902 0.9021 0.9018 0.9162 0.9184 0.9152 0.9161

Decision tree 30 0.8034 0.8091 0.8088 0.8083 0.8169 0.8103 0.8138 0.8114

Random forest seconds 0.8276 0.8373 0.8303 0.8305 0.8341 0.839 0.8331 0.8337

formance. For example, the accuracy for the random forest
classifier with 120, 60, and 30 seconds of execution time are
96.13% for Files and Process features (while 93.36% and
94.86% for the other two), 90.19% for Files and Process
features (while 88.38% and 89.38% for the other two), and
82.76% for Files and Process features (while 82.40% and
82.76% for the other two), respectively. The improvement
is expected due to the decision tree structure we depicted in
Fig. 10.

Lastly, all the features are combined to report our find-
ings in the dynamic analysis section of Table 8. This feature
formation allows us to achieve the best results for 30 sec-
onds of execution time. To further highlight, the Random
Forest classifier achieves 85.88% accuracy, 86.43% preci-
sion, 84.57% recall, and 85.21% F1 scores with 30 seconds
of event logs. Overall, we summarize that we obtain the
ransomware prediction performance in the mid-90s for 120

seconds of execution time, the low-90s for 60 seconds, and
themid-80s for 30 seconds. The following section shares how
including the Static-RWArmor predictive score improves our
results for dynamic analysis (which addresses RQ2).

7.2 Addressing RQ2: RWArmor results

As described in the previous section, we produce a feature
based on the probabilistic output received from the Static-
RWArmor. The feature is injected after the Files features.
Thus, the modified labels of the feature are x[0] – x[8] for
files, x[9] for Static-RWArmor, x[10] and x[11] for process,
and x[12] for registry. A similar visualization of the decision
tree structure is illustrated in Fig. 11 to showcase that the
inclusion of the Static-RWArmor feature as a decision split
is added in the 2nd level of the tree. The first decision split
is based on the 1st Principal Component of the processes
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Table 8 Binary classification performance of built machine learning models with file, registry, and process features

ML models Execution time Dynamic analysis Static-informed dynamic analysis

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Decision tree 120 0.8836 0.8887 0.8807 0.8857 0.8997 0.9049 0.8869 0.89095

Random forest seconds 0.9536 0.9546 0.951 0.9512 0.9612 0.9626 0.9608 0.9596

Decision tree 60 0.8595 0.8557 0.8583 0.8588 0.8638 0.8654 0.8614 0.8626

Random forest seconds 0.9095 0.9157 0.9083 0.9088 0.9238 0.9354 0.9214 0.9226

Decision tree 30 0.8071 0.8073 0.8182 0.8023 0.8132 0.8087 0.8187 0.8082

Random Forest seconds 0.8588 0.8643 0.8457 0.8521 0.8642 0.8668 0.8577 0.8611

Fig. 11 Visualization of the
built decision tree structure
based on files, registry, and
process feature spaces to
showcase the rules used for
prediction with static-RWArmor

feature (x[10]) as before, proving that the model does not
become too biased with the Static-RWArmor as a feature.
However, as per the figure, it plays a vital role in the deci-
sion process as it is present in the second decision split. The
further splits are based on the features processed from files.
It indicates that the decision tree and random forest classifier
should perform better results in predicting ransomware than
the dynamic analysis approach.

Next, our focus is turned into the static-informed dynamic
analysis parts of Table 5, 6, 7, and 8. Like the dynamic anal-
ysis, the random forest classifier outperforms the decision
tree classifier. It is evident from the tables that we achieve

up to 2% of performance gain at every experimental set-
ting when Static-RWArmor as a feature is included during
the training and testing phase of the classifiers. Our empir-
ical findings confirm that our proposed method, RWArmor
(a static-informed dynamic analysis approach), improves the
detection capabilities with 120, 60, and 30 seconds of exe-
cution events of ransomware. We present Fig. 12 to plot line
graphs of the documented metrics of Table 8 as a compari-
son between dynamic analysis and static-informed dynamic
analysis. As an illustration, it further proves our claim on
RWArmor’s effectiveness in accuracy, precision, recall, and
F1 scores.
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Fig. 12 A comparison visualization of the random forest classifier’s performances between dynamic analysis and static-informed dynamic analysis
(RWArmor) based on Files, Registry, and Process features (as per Table 8)

8 Discussion, limitations, and future work

This section provides a discussion of our research, including
its limitations and potential areas for extensions that will lead
to future work.
Detection Time. Our proposed method, RWArmor, aims to
effectively detect cryptographic windows ransomware as
early as possible during its execution cycle. We leverage the
Random Forest algorithm to accomplish this goal with Win-
dows events captured from the start of every ransomware
sample’s execution to 30, 60, and 120 seconds. The pre-
cision and recall scores are around 97% for 120 seconds,
around 93% for 60 seconds, and around 86% for 30 seconds.
In other words, the model predicts a sample is ransomware,

it is correct 86% of the time given 30-second event logs. A
promising future work is whether we can further improve the
detection capabilities reported in our work.
Robustness. The basis of our analysis on the accurate Win-
dows event logs collected from a sandbox environment (e.g.,
Any Run). Based on our domain knowledge, the dataset pro-
cessing tasks take place to let the built machine learning
models learn the underlying encryption patterns of ran-
somware. However, inspecting how well the models behave
for other sandbox-generated and emulator-based reports will
be interesting. This type of comparison study is left as our
future work. On a side note, we conducted extensive feature
engineering activities. One of the futureworks in this space is
to construct a Deep Learning network that takes in such ran-
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somware behavioral reports and identifies the best features
for ransomware detection.
File Recovery. The prime reason behind devising a prompt
detection approach is to flag a running ransomware process
early enough to prevent further damage to the file system.
Choosing 30 seconds of event logs for ransomware detection
will still yield encryption of some files. Thus, an important
extension of this research is to explore unique ways (e.g.,
decoy/canary files [24]) to recover the files which are already
corrupted due to the ongoing ransomware attack.

9 Conclusion

In this paper, a static-informed dynamic analysis approach is
proposed for cryptographic ransomware detection in a Win-
dows environment, and we call it “RWArmor.” Our method
incorporates the predictive output of the trained machine
learning models based on static features. Additionally, it is
operated on the essential Windows events captured during
the dynamic analysis of ransomware and benign applica-
tions. The uniqueness of our approach is that we combine
all of them as features in order to propose a prompt detection
mechanism. To achieve this goal, the random forest classi-
fier achieves around 97% accuracy, precision, recall, and F1
scores within 120 seconds of time frame from the start of
execution. The time frame is further minimized to evaluate
the effectiveness of our approach. We find out that the num-
ber drops to 93% and 86% for the mentioned metrics with
60 seconds and 30 seconds of execution time, respectively.
Additionally, our static-informed dynamic analysis approach
gains ∼2% performance gain compared with the dynamic
analysis-based features only for every experimental setting.
We are hopeful that the data-driven concepts proposed in this
research will be useful for prompt end-point protections.
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